Step |
Hyp |
Ref |
Expression |
1 |
|
eldiophelnn0 |
⊢ ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
2 |
|
nnex |
⊢ ℕ ∈ V |
3 |
|
1z |
⊢ 1 ∈ ℤ |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
4
|
uzinf |
⊢ ( 1 ∈ ℤ → ¬ ℕ ∈ Fin ) |
6 |
3 5
|
ax-mp |
⊢ ¬ ℕ ∈ Fin |
7 |
|
elfznn |
⊢ ( 𝑝 ∈ ( 1 ... 𝑁 ) → 𝑝 ∈ ℕ ) |
8 |
7
|
ssriv |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
9 |
|
eldioph2b |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ℕ ∈ V ) ∧ ( ¬ ℕ ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ ℕ ) ) → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ℕ ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
10 |
6 8 9
|
mpanr12 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ℕ ∈ V ) → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ℕ ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
11 |
2 10
|
mpan2 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ℕ ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
12 |
1 11
|
biadanii |
⊢ ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑝 ∈ ( mzPoly ‘ ℕ ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ℕ ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |