Step |
Hyp |
Ref |
Expression |
1 |
|
df-dioph |
⊢ Dioph = ( 𝑛 ∈ ℕ0 ↦ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
2 |
1
|
dmmptss |
⊢ dom Dioph ⊆ ℕ0 |
3 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( Dioph ‘ 𝑁 ) → 𝑁 ∈ dom Dioph ) |
4 |
2 3
|
sselid |
⊢ ( 𝐷 ∈ ( Dioph ‘ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
5 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑁 ) ) |
6 |
|
eqidd |
⊢ ( 𝑛 = 𝑁 → ( mzPoly ‘ ( 1 ... 𝑘 ) ) = ( mzPoly ‘ ( 1 ... 𝑘 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
8 |
7
|
reseq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑢 ↾ ( 1 ... 𝑛 ) ) = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ↔ 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) ) |
10 |
9
|
anbi1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ) ) |
11 |
10
|
rexbidv |
⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ) ) |
12 |
11
|
abbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
13 |
5 6 12
|
mpoeq123dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
14 |
13
|
rneqd |
⊢ ( 𝑛 = 𝑁 → ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) = ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
15 |
|
ovex |
⊢ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∈ V |
16 |
15
|
pwex |
⊢ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∈ V |
17 |
|
eqid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
18 |
17
|
rnmpo |
⊢ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) = { 𝑑 ∣ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) 𝑑 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } } |
19 |
|
elmapi |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) → 𝑢 : ( 1 ... 𝑘 ) ⟶ ℕ0 ) |
20 |
|
fzss2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑘 ) ) |
21 |
|
fssres |
⊢ ( ( 𝑢 : ( 1 ... 𝑘 ) ⟶ ℕ0 ∧ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑘 ) ) → ( 𝑢 ↾ ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ ℕ0 ) |
22 |
19 20 21
|
syl2anr |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ) → ( 𝑢 ↾ ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ ℕ0 ) |
23 |
|
nn0ex |
⊢ ℕ0 ∈ V |
24 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
25 |
23 24
|
elmap |
⊢ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑢 ↾ ( 1 ... 𝑁 ) ) : ( 1 ... 𝑁 ) ⟶ ℕ0 ) |
26 |
22 25
|
sylibr |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ) → ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
27 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
29 |
26 28
|
syl5ibrcom |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ) → ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
30 |
29
|
rexlimdva |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
31 |
30
|
abssdv |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
32 |
15
|
elpw2 |
⊢ ( { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ∈ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ↔ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ⊆ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
33 |
31 32
|
sylibr |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ∈ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
34 |
|
eleq1 |
⊢ ( 𝑑 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } → ( 𝑑 ∈ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ↔ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ∈ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
35 |
33 34
|
syl5ibrcom |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑑 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } → 𝑑 ∈ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
36 |
35
|
rexlimdvw |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) 𝑑 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } → 𝑑 ∈ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
37 |
36
|
rexlimiv |
⊢ ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) 𝑑 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } → 𝑑 ∈ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
38 |
37
|
abssi |
⊢ { 𝑑 ∣ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) 𝑑 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } } ⊆ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
39 |
18 38
|
eqsstri |
⊢ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ⊆ 𝒫 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
40 |
16 39
|
ssexi |
⊢ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ∈ V |
41 |
14 1 40
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ0 → ( Dioph ‘ 𝑁 ) = ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
42 |
41
|
eleq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐷 ∈ ( Dioph ‘ 𝑁 ) ↔ 𝐷 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) ) |
43 |
|
ovex |
⊢ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ∈ V |
44 |
43
|
abrexex |
⊢ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) } ∈ V |
45 |
|
simpl |
⊢ ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
46 |
45
|
reximi |
⊢ ( ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
47 |
46
|
ss2abi |
⊢ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ⊆ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) } |
48 |
44 47
|
ssexi |
⊢ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ∈ V |
49 |
17 48
|
elrnmpo |
⊢ ( 𝐷 ∈ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ↔ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) 𝐷 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
50 |
42 49
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐷 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) 𝐷 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
51 |
4 50
|
biadanii |
⊢ ( 𝐷 ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) 𝐷 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |