Metamath Proof Explorer


Theorem eldiophb

Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Assertion eldiophb D Dioph N N 0 k N p mzPoly 1 k D = t | u 0 1 k t = u 1 N p u = 0

Proof

Step Hyp Ref Expression
1 df-dioph Dioph = n 0 ran k n , p mzPoly 1 k t | u 0 1 k t = u 1 n p u = 0
2 1 dmmptss dom Dioph 0
3 elfvdm D Dioph N N dom Dioph
4 2 3 sseldi D Dioph N N 0
5 fveq2 n = N n = N
6 eqidd n = N mzPoly 1 k = mzPoly 1 k
7 oveq2 n = N 1 n = 1 N
8 7 reseq2d n = N u 1 n = u 1 N
9 8 eqeq2d n = N t = u 1 n t = u 1 N
10 9 anbi1d n = N t = u 1 n p u = 0 t = u 1 N p u = 0
11 10 rexbidv n = N u 0 1 k t = u 1 n p u = 0 u 0 1 k t = u 1 N p u = 0
12 11 abbidv n = N t | u 0 1 k t = u 1 n p u = 0 = t | u 0 1 k t = u 1 N p u = 0
13 5 6 12 mpoeq123dv n = N k n , p mzPoly 1 k t | u 0 1 k t = u 1 n p u = 0 = k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0
14 13 rneqd n = N ran k n , p mzPoly 1 k t | u 0 1 k t = u 1 n p u = 0 = ran k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0
15 ovex 0 1 N V
16 15 pwex 𝒫 0 1 N V
17 eqid k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0 = k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0
18 17 rnmpo ran k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0 = d | k N p mzPoly 1 k d = t | u 0 1 k t = u 1 N p u = 0
19 elmapi u 0 1 k u : 1 k 0
20 fzss2 k N 1 N 1 k
21 fssres u : 1 k 0 1 N 1 k u 1 N : 1 N 0
22 19 20 21 syl2anr k N u 0 1 k u 1 N : 1 N 0
23 nn0ex 0 V
24 ovex 1 N V
25 23 24 elmap u 1 N 0 1 N u 1 N : 1 N 0
26 22 25 sylibr k N u 0 1 k u 1 N 0 1 N
27 eleq1 t = u 1 N t 0 1 N u 1 N 0 1 N
28 27 adantr t = u 1 N p u = 0 t 0 1 N u 1 N 0 1 N
29 26 28 syl5ibrcom k N u 0 1 k t = u 1 N p u = 0 t 0 1 N
30 29 rexlimdva k N u 0 1 k t = u 1 N p u = 0 t 0 1 N
31 30 abssdv k N t | u 0 1 k t = u 1 N p u = 0 0 1 N
32 15 elpw2 t | u 0 1 k t = u 1 N p u = 0 𝒫 0 1 N t | u 0 1 k t = u 1 N p u = 0 0 1 N
33 31 32 sylibr k N t | u 0 1 k t = u 1 N p u = 0 𝒫 0 1 N
34 eleq1 d = t | u 0 1 k t = u 1 N p u = 0 d 𝒫 0 1 N t | u 0 1 k t = u 1 N p u = 0 𝒫 0 1 N
35 33 34 syl5ibrcom k N d = t | u 0 1 k t = u 1 N p u = 0 d 𝒫 0 1 N
36 35 rexlimdvw k N p mzPoly 1 k d = t | u 0 1 k t = u 1 N p u = 0 d 𝒫 0 1 N
37 36 rexlimiv k N p mzPoly 1 k d = t | u 0 1 k t = u 1 N p u = 0 d 𝒫 0 1 N
38 37 abssi d | k N p mzPoly 1 k d = t | u 0 1 k t = u 1 N p u = 0 𝒫 0 1 N
39 18 38 eqsstri ran k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0 𝒫 0 1 N
40 16 39 ssexi ran k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0 V
41 14 1 40 fvmpt N 0 Dioph N = ran k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0
42 41 eleq2d N 0 D Dioph N D ran k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0
43 ovex 0 1 k V
44 43 abrexex t | u 0 1 k t = u 1 N V
45 simpl t = u 1 N p u = 0 t = u 1 N
46 45 reximi u 0 1 k t = u 1 N p u = 0 u 0 1 k t = u 1 N
47 46 ss2abi t | u 0 1 k t = u 1 N p u = 0 t | u 0 1 k t = u 1 N
48 44 47 ssexi t | u 0 1 k t = u 1 N p u = 0 V
49 17 48 elrnmpo D ran k N , p mzPoly 1 k t | u 0 1 k t = u 1 N p u = 0 k N p mzPoly 1 k D = t | u 0 1 k t = u 1 N p u = 0
50 42 49 bitrdi N 0 D Dioph N k N p mzPoly 1 k D = t | u 0 1 k t = u 1 N p u = 0
51 4 50 biadanii D Dioph N N 0 k N p mzPoly 1 k D = t | u 0 1 k t = u 1 N p u = 0