Description: Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | eldioph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp2 | |
|
3 | simp3 | |
|
4 | eqidd | |
|
5 | fveq1 | |
|
6 | 5 | eqeq1d | |
7 | 6 | anbi2d | |
8 | 7 | rexbidv | |
9 | 8 | abbidv | |
10 | 9 | rspceeqv | |
11 | 3 4 10 | syl2anc | |
12 | oveq2 | |
|
13 | 12 | fveq2d | |
14 | 12 | oveq2d | |
15 | 14 | rexeqdv | |
16 | 15 | abbidv | |
17 | 16 | eqeq2d | |
18 | 13 17 | rexeqbidv | |
19 | 18 | rspcev | |
20 | 2 11 19 | syl2anc | |
21 | eldiophb | |
|
22 | 1 20 21 | sylanbrc | |