Metamath Proof Explorer


Theorem eldioph

Description: Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion eldioph N0KNPmzPoly1Kt|u01Kt=u1NPu=0DiophN

Proof

Step Hyp Ref Expression
1 simp1 N0KNPmzPoly1KN0
2 simp2 N0KNPmzPoly1KKN
3 simp3 N0KNPmzPoly1KPmzPoly1K
4 eqidd N0KNPmzPoly1Kt|u01Kt=u1NPu=0=t|u01Kt=u1NPu=0
5 fveq1 p=Ppu=Pu
6 5 eqeq1d p=Ppu=0Pu=0
7 6 anbi2d p=Pt=u1Npu=0t=u1NPu=0
8 7 rexbidv p=Pu01Kt=u1Npu=0u01Kt=u1NPu=0
9 8 abbidv p=Pt|u01Kt=u1Npu=0=t|u01Kt=u1NPu=0
10 9 rspceeqv PmzPoly1Kt|u01Kt=u1NPu=0=t|u01Kt=u1NPu=0pmzPoly1Kt|u01Kt=u1NPu=0=t|u01Kt=u1Npu=0
11 3 4 10 syl2anc N0KNPmzPoly1KpmzPoly1Kt|u01Kt=u1NPu=0=t|u01Kt=u1Npu=0
12 oveq2 k=K1k=1K
13 12 fveq2d k=KmzPoly1k=mzPoly1K
14 12 oveq2d k=K01k=01K
15 14 rexeqdv k=Ku01kt=u1Npu=0u01Kt=u1Npu=0
16 15 abbidv k=Kt|u01kt=u1Npu=0=t|u01Kt=u1Npu=0
17 16 eqeq2d k=Kt|u01Kt=u1NPu=0=t|u01kt=u1Npu=0t|u01Kt=u1NPu=0=t|u01Kt=u1Npu=0
18 13 17 rexeqbidv k=KpmzPoly1kt|u01Kt=u1NPu=0=t|u01kt=u1Npu=0pmzPoly1Kt|u01Kt=u1NPu=0=t|u01Kt=u1Npu=0
19 18 rspcev KNpmzPoly1Kt|u01Kt=u1NPu=0=t|u01Kt=u1Npu=0kNpmzPoly1kt|u01Kt=u1NPu=0=t|u01kt=u1Npu=0
20 2 11 19 syl2anc N0KNPmzPoly1KkNpmzPoly1kt|u01Kt=u1NPu=0=t|u01kt=u1Npu=0
21 eldiophb t|u01Kt=u1NPu=0DiophNN0kNpmzPoly1kt|u01Kt=u1NPu=0=t|u01kt=u1Npu=0
22 1 20 21 sylanbrc N0KNPmzPoly1Kt|u01Kt=u1NPu=0DiophN