Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) → 𝑁 ∈ ℕ0 ) |
2 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
3 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) → 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) |
4 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ) |
5 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑢 ) = ( 𝑃 ‘ 𝑢 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑢 ) = 0 ↔ ( 𝑃 ‘ 𝑢 ) = 0 ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) ) ) |
9 |
8
|
abbidv |
⊢ ( 𝑝 = 𝑃 → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ) |
10 |
9
|
rspceeqv |
⊢ ( ( 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ∧ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ) → ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
11 |
3 4 10
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) → ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
12 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 1 ... 𝑘 ) = ( 1 ... 𝐾 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( mzPoly ‘ ( 1 ... 𝑘 ) ) = ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) |
14 |
12
|
oveq2d |
⊢ ( 𝑘 = 𝐾 → ( ℕ0 ↑m ( 1 ... 𝑘 ) ) = ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ) |
15 |
14
|
rexeqdv |
⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ) ) |
16 |
15
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ↔ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
18 |
13 17
|
rexeqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
19 |
18
|
rspcev |
⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
20 |
2 11 19
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
21 |
|
eldiophb |
⊢ ( { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
22 |
1 20 21
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ( mzPoly ‘ ( 1 ... 𝐾 ) ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝐾 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑃 ‘ 𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |