Metamath Proof Explorer


Theorem diophrw

Description: Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014)

Ref Expression
Assertion diophrw ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0m 𝑆 ) ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑐 ∈ ( ℕ0m 𝑇 ) ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) } )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) → 𝑏 ∈ ( ℕ0m 𝑆 ) )
2 nn0ex 0 ∈ V
3 simp1 ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑆 ∈ V )
4 3 adantr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) → 𝑆 ∈ V )
5 elmapg ( ( ℕ0 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑏 ∈ ( ℕ0m 𝑆 ) ↔ 𝑏 : 𝑆 ⟶ ℕ0 ) )
6 2 4 5 sylancr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) → ( 𝑏 ∈ ( ℕ0m 𝑆 ) ↔ 𝑏 : 𝑆 ⟶ ℕ0 ) )
7 1 6 mpbid ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) → 𝑏 : 𝑆 ⟶ ℕ0 )
8 7 adantr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑏 : 𝑆 ⟶ ℕ0 )
9 simp2 ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑀 : 𝑇1-1𝑆 )
10 f1f ( 𝑀 : 𝑇1-1𝑆𝑀 : 𝑇𝑆 )
11 9 10 syl ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑀 : 𝑇𝑆 )
12 11 ad2antrr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑀 : 𝑇𝑆 )
13 fco ( ( 𝑏 : 𝑆 ⟶ ℕ0𝑀 : 𝑇𝑆 ) → ( 𝑏𝑀 ) : 𝑇 ⟶ ℕ0 )
14 8 12 13 syl2anc ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏𝑀 ) : 𝑇 ⟶ ℕ0 )
15 f1dmex ( ( 𝑀 : 𝑇1-1𝑆𝑆 ∈ V ) → 𝑇 ∈ V )
16 9 3 15 syl2anc ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑇 ∈ V )
17 16 ad2antrr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑇 ∈ V )
18 elmapg ( ( ℕ0 ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝑏𝑀 ) ∈ ( ℕ0m 𝑇 ) ↔ ( 𝑏𝑀 ) : 𝑇 ⟶ ℕ0 ) )
19 2 17 18 sylancr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑏𝑀 ) ∈ ( ℕ0m 𝑇 ) ↔ ( 𝑏𝑀 ) : 𝑇 ⟶ ℕ0 ) )
20 14 19 mpbird ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏𝑀 ) ∈ ( ℕ0m 𝑇 ) )
21 simprl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑎 = ( 𝑏𝑂 ) )
22 resco ( ( 𝑏𝑀 ) ↾ 𝑂 ) = ( 𝑏 ∘ ( 𝑀𝑂 ) )
23 simpll3 ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) )
24 23 coeq2d ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏 ∘ ( 𝑀𝑂 ) ) = ( 𝑏 ∘ ( I ↾ 𝑂 ) ) )
25 coires1 ( 𝑏 ∘ ( I ↾ 𝑂 ) ) = ( 𝑏𝑂 )
26 24 25 eqtrdi ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏 ∘ ( 𝑀𝑂 ) ) = ( 𝑏𝑂 ) )
27 22 26 syl5eq ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑏𝑀 ) ↾ 𝑂 ) = ( 𝑏𝑂 ) )
28 21 27 eqtr4d ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑎 = ( ( 𝑏𝑀 ) ↾ 𝑂 ) )
29 simpll1 ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑆 ∈ V )
30 oveq2 ( 𝑎 = 𝑆 → ( ℕ0m 𝑎 ) = ( ℕ0m 𝑆 ) )
31 oveq2 ( 𝑎 = 𝑆 → ( ℤ ↑m 𝑎 ) = ( ℤ ↑m 𝑆 ) )
32 30 31 sseq12d ( 𝑎 = 𝑆 → ( ( ℕ0m 𝑎 ) ⊆ ( ℤ ↑m 𝑎 ) ↔ ( ℕ0m 𝑆 ) ⊆ ( ℤ ↑m 𝑆 ) ) )
33 zex ℤ ∈ V
34 nn0ssz 0 ⊆ ℤ
35 mapss ( ( ℤ ∈ V ∧ ℕ0 ⊆ ℤ ) → ( ℕ0m 𝑎 ) ⊆ ( ℤ ↑m 𝑎 ) )
36 33 34 35 mp2an ( ℕ0m 𝑎 ) ⊆ ( ℤ ↑m 𝑎 )
37 32 36 vtoclg ( 𝑆 ∈ V → ( ℕ0m 𝑆 ) ⊆ ( ℤ ↑m 𝑆 ) )
38 29 37 syl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ℕ0m 𝑆 ) ⊆ ( ℤ ↑m 𝑆 ) )
39 simplr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑏 ∈ ( ℕ0m 𝑆 ) )
40 38 39 sseldd ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑏 ∈ ( ℤ ↑m 𝑆 ) )
41 coeq1 ( 𝑑 = 𝑏 → ( 𝑑𝑀 ) = ( 𝑏𝑀 ) )
42 41 fveq2d ( 𝑑 = 𝑏 → ( 𝑃 ‘ ( 𝑑𝑀 ) ) = ( 𝑃 ‘ ( 𝑏𝑀 ) ) )
43 eqid ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) )
44 fvex ( 𝑃 ‘ ( 𝑏𝑀 ) ) ∈ V
45 42 43 44 fvmpt ( 𝑏 ∈ ( ℤ ↑m 𝑆 ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = ( 𝑃 ‘ ( 𝑏𝑀 ) ) )
46 40 45 syl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = ( 𝑃 ‘ ( 𝑏𝑀 ) ) )
47 simprr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 )
48 46 47 eqtr3d ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑃 ‘ ( 𝑏𝑀 ) ) = 0 )
49 reseq1 ( 𝑐 = ( 𝑏𝑀 ) → ( 𝑐𝑂 ) = ( ( 𝑏𝑀 ) ↾ 𝑂 ) )
50 49 eqeq2d ( 𝑐 = ( 𝑏𝑀 ) → ( 𝑎 = ( 𝑐𝑂 ) ↔ 𝑎 = ( ( 𝑏𝑀 ) ↾ 𝑂 ) ) )
51 fveqeq2 ( 𝑐 = ( 𝑏𝑀 ) → ( ( 𝑃𝑐 ) = 0 ↔ ( 𝑃 ‘ ( 𝑏𝑀 ) ) = 0 ) )
52 50 51 anbi12d ( 𝑐 = ( 𝑏𝑀 ) → ( ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ↔ ( 𝑎 = ( ( 𝑏𝑀 ) ↾ 𝑂 ) ∧ ( 𝑃 ‘ ( 𝑏𝑀 ) ) = 0 ) ) )
53 52 rspcev ( ( ( 𝑏𝑀 ) ∈ ( ℕ0m 𝑇 ) ∧ ( 𝑎 = ( ( 𝑏𝑀 ) ↾ 𝑂 ) ∧ ( 𝑃 ‘ ( 𝑏𝑀 ) ) = 0 ) ) → ∃ 𝑐 ∈ ( ℕ0m 𝑇 ) ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) )
54 20 28 48 53 syl12anc ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ∃ 𝑐 ∈ ( ℕ0m 𝑇 ) ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) )
55 54 rexlimdva2 ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → ( ∃ 𝑏 ∈ ( ℕ0m 𝑆 ) ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) → ∃ 𝑐 ∈ ( ℕ0m 𝑇 ) ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) )
56 simpr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → 𝑐 ∈ ( ℕ0m 𝑇 ) )
57 16 adantr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → 𝑇 ∈ V )
58 elmapg ( ( ℕ0 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑐 ∈ ( ℕ0m 𝑇 ) ↔ 𝑐 : 𝑇 ⟶ ℕ0 ) )
59 2 57 58 sylancr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑐 ∈ ( ℕ0m 𝑇 ) ↔ 𝑐 : 𝑇 ⟶ ℕ0 ) )
60 56 59 mpbid ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → 𝑐 : 𝑇 ⟶ ℕ0 )
61 60 adantr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → 𝑐 : 𝑇 ⟶ ℕ0 )
62 9 ad2antrr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → 𝑀 : 𝑇1-1𝑆 )
63 f1cnv ( 𝑀 : 𝑇1-1𝑆 𝑀 : ran 𝑀1-1-onto𝑇 )
64 f1of ( 𝑀 : ran 𝑀1-1-onto𝑇 𝑀 : ran 𝑀𝑇 )
65 62 63 64 3syl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → 𝑀 : ran 𝑀𝑇 )
66 fco ( ( 𝑐 : 𝑇 ⟶ ℕ0 𝑀 : ran 𝑀𝑇 ) → ( 𝑐 𝑀 ) : ran 𝑀 ⟶ ℕ0 )
67 61 65 66 syl2anc ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( 𝑐 𝑀 ) : ran 𝑀 ⟶ ℕ0 )
68 c0ex 0 ∈ V
69 68 fconst ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 }
70 69 a1i ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 } )
71 disjdif ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅
72 71 a1i ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ )
73 fun ( ( ( ( 𝑐 𝑀 ) : ran 𝑀 ⟶ ℕ0 ∧ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 } ) ∧ ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℕ0 ∪ { 0 } ) )
74 67 70 72 73 syl21anc ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℕ0 ∪ { 0 } ) )
75 frn ( 𝑀 : 𝑇𝑆 → ran 𝑀𝑆 )
76 9 10 75 3syl ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → ran 𝑀𝑆 )
77 76 ad2antrr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ran 𝑀𝑆 )
78 undif ( ran 𝑀𝑆 ↔ ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) = 𝑆 )
79 77 78 sylib ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) = 𝑆 )
80 0nn0 0 ∈ ℕ0
81 snssi ( 0 ∈ ℕ0 → { 0 } ⊆ ℕ0 )
82 80 81 ax-mp { 0 } ⊆ ℕ0
83 ssequn2 ( { 0 } ⊆ ℕ0 ↔ ( ℕ0 ∪ { 0 } ) = ℕ0 )
84 82 83 mpbi ( ℕ0 ∪ { 0 } ) = ℕ0
85 84 a1i ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ℕ0 ∪ { 0 } ) = ℕ0 )
86 79 85 feq23d ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) )
87 74 86 mpbid ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 )
88 elmapg ( ( ℕ0 ∈ V ∧ 𝑆 ∈ V ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0m 𝑆 ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) )
89 2 3 88 sylancr ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0m 𝑆 ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) )
90 89 ad2antrr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0m 𝑆 ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) )
91 87 90 mpbird ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0m 𝑆 ) )
92 simprl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → 𝑎 = ( 𝑐𝑂 ) )
93 resundir ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) = ( ( ( 𝑐 𝑀 ) ↾ 𝑂 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) )
94 resco ( ( 𝑐 𝑀 ) ↾ 𝑂 ) = ( 𝑐 ∘ ( 𝑀𝑂 ) )
95 cnvresid ( I ↾ 𝑂 ) = ( I ↾ 𝑂 )
96 simpl2 ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → 𝑀 : 𝑇1-1𝑆 )
97 df-f1 ( 𝑀 : 𝑇1-1𝑆 ↔ ( 𝑀 : 𝑇𝑆 ∧ Fun 𝑀 ) )
98 97 simprbi ( 𝑀 : 𝑇1-1𝑆 → Fun 𝑀 )
99 funcnvres ( Fun 𝑀 ( 𝑀𝑂 ) = ( 𝑀 ↾ ( 𝑀𝑂 ) ) )
100 96 98 99 3syl ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑀𝑂 ) = ( 𝑀 ↾ ( 𝑀𝑂 ) ) )
101 simpl3 ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) )
102 101 cnveqd ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) )
103 df-ima ( 𝑀𝑂 ) = ran ( 𝑀𝑂 )
104 101 rneqd ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ran ( 𝑀𝑂 ) = ran ( I ↾ 𝑂 ) )
105 rnresi ran ( I ↾ 𝑂 ) = 𝑂
106 104 105 eqtrdi ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ran ( 𝑀𝑂 ) = 𝑂 )
107 103 106 syl5eq ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑀𝑂 ) = 𝑂 )
108 107 reseq2d ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑀 ↾ ( 𝑀𝑂 ) ) = ( 𝑀𝑂 ) )
109 100 102 108 3eqtr3d ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( I ↾ 𝑂 ) = ( 𝑀𝑂 ) )
110 95 109 syl5reqr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) )
111 110 coeq2d ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑐 ∘ ( 𝑀𝑂 ) ) = ( 𝑐 ∘ ( I ↾ 𝑂 ) ) )
112 coires1 ( 𝑐 ∘ ( I ↾ 𝑂 ) ) = ( 𝑐𝑂 )
113 111 112 eqtrdi ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑐 ∘ ( 𝑀𝑂 ) ) = ( 𝑐𝑂 ) )
114 94 113 syl5eq ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( ( 𝑐 𝑀 ) ↾ 𝑂 ) = ( 𝑐𝑂 ) )
115 dmres dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ( 𝑂 ∩ dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) )
116 68 snnz { 0 } ≠ ∅
117 dmxp ( { 0 } ≠ ∅ → dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) = ( 𝑆 ∖ ran 𝑀 ) )
118 116 117 ax-mp dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) = ( 𝑆 ∖ ran 𝑀 )
119 118 ineq2i ( 𝑂 ∩ dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) = ( 𝑂 ∩ ( 𝑆 ∖ ran 𝑀 ) )
120 inss1 ( 𝑂𝑆 ) ⊆ 𝑂
121 104 105 eqtr2di ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → 𝑂 = ran ( 𝑀𝑂 ) )
122 resss ( 𝑀𝑂 ) ⊆ 𝑀
123 rnss ( ( 𝑀𝑂 ) ⊆ 𝑀 → ran ( 𝑀𝑂 ) ⊆ ran 𝑀 )
124 122 123 mp1i ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ran ( 𝑀𝑂 ) ⊆ ran 𝑀 )
125 121 124 eqsstrd ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → 𝑂 ⊆ ran 𝑀 )
126 120 125 sstrid ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑂𝑆 ) ⊆ ran 𝑀 )
127 inssdif0 ( ( 𝑂𝑆 ) ⊆ ran 𝑀 ↔ ( 𝑂 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ )
128 126 127 sylib ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑂 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ )
129 119 128 syl5eq ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑂 ∩ dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) = ∅ )
130 115 129 syl5eq ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ )
131 relres Rel ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 )
132 reldm0 ( Rel ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) → ( ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ↔ dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ) )
133 131 132 ax-mp ( ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ↔ dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ )
134 130 133 sylibr ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ )
135 114 134 uneq12d ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( ( ( 𝑐 𝑀 ) ↾ 𝑂 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) ) = ( ( 𝑐𝑂 ) ∪ ∅ ) )
136 93 135 syl5eq ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) = ( ( 𝑐𝑂 ) ∪ ∅ ) )
137 un0 ( ( 𝑐𝑂 ) ∪ ∅ ) = ( 𝑐𝑂 )
138 136 137 eqtr2di ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → ( 𝑐𝑂 ) = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) )
139 138 adantr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( 𝑐𝑂 ) = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) )
140 92 139 eqtrd ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → 𝑎 = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) )
141 fss ( ( 𝑐 : 𝑇 ⟶ ℕ0 ∧ ℕ0 ⊆ ℤ ) → 𝑐 : 𝑇 ⟶ ℤ )
142 60 34 141 sylancl ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) → 𝑐 : 𝑇 ⟶ ℤ )
143 142 adantr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → 𝑐 : 𝑇 ⟶ ℤ )
144 fco ( ( 𝑐 : 𝑇 ⟶ ℤ ∧ 𝑀 : ran 𝑀𝑇 ) → ( 𝑐 𝑀 ) : ran 𝑀 ⟶ ℤ )
145 143 65 144 syl2anc ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( 𝑐 𝑀 ) : ran 𝑀 ⟶ ℤ )
146 fun ( ( ( ( 𝑐 𝑀 ) : ran 𝑀 ⟶ ℤ ∧ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 } ) ∧ ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℤ ∪ { 0 } ) )
147 145 70 72 146 syl21anc ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℤ ∪ { 0 } ) )
148 0z 0 ∈ ℤ
149 snssi ( 0 ∈ ℤ → { 0 } ⊆ ℤ )
150 148 149 ax-mp { 0 } ⊆ ℤ
151 ssequn2 ( { 0 } ⊆ ℤ ↔ ( ℤ ∪ { 0 } ) = ℤ )
152 150 151 mpbi ( ℤ ∪ { 0 } ) = ℤ
153 152 a1i ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ℤ ∪ { 0 } ) = ℤ )
154 79 153 feq23d ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℤ ∪ { 0 } ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) )
155 147 154 mpbid ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ )
156 elmapg ( ( ℤ ∈ V ∧ 𝑆 ∈ V ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) )
157 33 3 156 sylancr ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) )
158 157 ad2antrr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) ↔ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) )
159 155 158 mpbird ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) )
160 coeq1 ( 𝑑 = ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑑𝑀 ) = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) )
161 160 fveq2d ( 𝑑 = ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑃 ‘ ( 𝑑𝑀 ) ) = ( 𝑃 ‘ ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) )
162 fvex ( 𝑃 ‘ ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) ∈ V
163 161 43 162 fvmpt ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = ( 𝑃 ‘ ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) )
164 159 163 syl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = ( 𝑃 ‘ ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) )
165 coundir ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) = ( ( ( 𝑐 𝑀 ) ∘ 𝑀 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) )
166 coass ( ( 𝑐 𝑀 ) ∘ 𝑀 ) = ( 𝑐 ∘ ( 𝑀𝑀 ) )
167 f1cocnv1 ( 𝑀 : 𝑇1-1𝑆 → ( 𝑀𝑀 ) = ( I ↾ 𝑇 ) )
168 167 coeq2d ( 𝑀 : 𝑇1-1𝑆 → ( 𝑐 ∘ ( 𝑀𝑀 ) ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) ) )
169 62 168 syl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( 𝑐 ∘ ( 𝑀𝑀 ) ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) ) )
170 166 169 syl5eq ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 𝑀 ) ∘ 𝑀 ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) ) )
171 118 ineq1i ( dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∩ ran 𝑀 ) = ( ( 𝑆 ∖ ran 𝑀 ) ∩ ran 𝑀 )
172 incom ( ( 𝑆 ∖ ran 𝑀 ) ∩ ran 𝑀 ) = ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) )
173 171 172 71 3eqtri ( dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∩ ran 𝑀 ) = ∅
174 coeq0 ( ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) = ∅ ↔ ( dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∩ ran 𝑀 ) = ∅ )
175 173 174 mpbir ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) = ∅
176 175 a1i ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) = ∅ )
177 170 176 uneq12d ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑐 𝑀 ) ∘ 𝑀 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) ) = ( ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ∪ ∅ ) )
178 un0 ( ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ∪ ∅ ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) )
179 fcoi1 ( 𝑐 : 𝑇 ⟶ ℕ0 → ( 𝑐 ∘ ( I ↾ 𝑇 ) ) = 𝑐 )
180 61 179 syl ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( 𝑐 ∘ ( I ↾ 𝑇 ) ) = 𝑐 )
181 178 180 syl5eq ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ∪ ∅ ) = 𝑐 )
182 177 181 eqtrd ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑐 𝑀 ) ∘ 𝑀 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) ) = 𝑐 )
183 165 182 syl5eq ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) = 𝑐 )
184 183 fveq2d ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( 𝑃 ‘ ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) = ( 𝑃𝑐 ) )
185 simprr ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( 𝑃𝑐 ) = 0 )
186 164 184 185 3eqtrd ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 )
187 reseq1 ( 𝑏 = ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑏𝑂 ) = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) )
188 187 eqeq2d ( 𝑏 = ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑎 = ( 𝑏𝑂 ) ↔ 𝑎 = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ) )
189 fveqeq2 ( 𝑏 = ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 ) )
190 188 189 anbi12d ( 𝑏 = ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ↔ ( 𝑎 = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 ) ) )
191 190 rspcev ( ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0m 𝑆 ) ∧ ( 𝑎 = ( ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ ( ( 𝑐 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 ) ) → ∃ 𝑏 ∈ ( ℕ0m 𝑆 ) ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) )
192 91 140 186 191 syl12anc ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) → ∃ 𝑏 ∈ ( ℕ0m 𝑆 ) ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) )
193 192 rexlimdva2 ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → ( ∃ 𝑐 ∈ ( ℕ0m 𝑇 ) ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) → ∃ 𝑏 ∈ ( ℕ0m 𝑆 ) ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) )
194 55 193 impbid ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → ( ∃ 𝑏 ∈ ( ℕ0m 𝑆 ) ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ↔ ∃ 𝑐 ∈ ( ℕ0m 𝑇 ) ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) ) )
195 194 abbidv ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇1-1𝑆 ∧ ( 𝑀𝑂 ) = ( I ↾ 𝑂 ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0m 𝑆 ) ( 𝑎 = ( 𝑏𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑𝑀 ) ) ) ‘ 𝑏 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑐 ∈ ( ℕ0m 𝑇 ) ( 𝑎 = ( 𝑐𝑂 ) ∧ ( 𝑃𝑐 ) = 0 ) } )