Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) → 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) |
2 |
|
nn0ex |
⊢ ℕ0 ∈ V |
3 |
|
simp1 |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑆 ∈ V ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) → 𝑆 ∈ V ) |
5 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ↔ 𝑏 : 𝑆 ⟶ ℕ0 ) ) |
6 |
2 4 5
|
sylancr |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) → ( 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ↔ 𝑏 : 𝑆 ⟶ ℕ0 ) ) |
7 |
1 6
|
mpbid |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) → 𝑏 : 𝑆 ⟶ ℕ0 ) |
8 |
7
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑏 : 𝑆 ⟶ ℕ0 ) |
9 |
|
simp2 |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑀 : 𝑇 –1-1→ 𝑆 ) |
10 |
|
f1f |
⊢ ( 𝑀 : 𝑇 –1-1→ 𝑆 → 𝑀 : 𝑇 ⟶ 𝑆 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑀 : 𝑇 ⟶ 𝑆 ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑀 : 𝑇 ⟶ 𝑆 ) |
13 |
|
fco |
⊢ ( ( 𝑏 : 𝑆 ⟶ ℕ0 ∧ 𝑀 : 𝑇 ⟶ 𝑆 ) → ( 𝑏 ∘ 𝑀 ) : 𝑇 ⟶ ℕ0 ) |
14 |
8 12 13
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏 ∘ 𝑀 ) : 𝑇 ⟶ ℕ0 ) |
15 |
|
f1dmex |
⊢ ( ( 𝑀 : 𝑇 –1-1→ 𝑆 ∧ 𝑆 ∈ V ) → 𝑇 ∈ V ) |
16 |
9 3 15
|
syl2anc |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → 𝑇 ∈ V ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑇 ∈ V ) |
18 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝑏 ∘ 𝑀 ) ∈ ( ℕ0 ↑m 𝑇 ) ↔ ( 𝑏 ∘ 𝑀 ) : 𝑇 ⟶ ℕ0 ) ) |
19 |
2 17 18
|
sylancr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑏 ∘ 𝑀 ) ∈ ( ℕ0 ↑m 𝑇 ) ↔ ( 𝑏 ∘ 𝑀 ) : 𝑇 ⟶ ℕ0 ) ) |
20 |
14 19
|
mpbird |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏 ∘ 𝑀 ) ∈ ( ℕ0 ↑m 𝑇 ) ) |
21 |
|
simprl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑎 = ( 𝑏 ↾ 𝑂 ) ) |
22 |
|
resco |
⊢ ( ( 𝑏 ∘ 𝑀 ) ↾ 𝑂 ) = ( 𝑏 ∘ ( 𝑀 ↾ 𝑂 ) ) |
23 |
|
simpll3 |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) |
24 |
23
|
coeq2d |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏 ∘ ( 𝑀 ↾ 𝑂 ) ) = ( 𝑏 ∘ ( I ↾ 𝑂 ) ) ) |
25 |
|
coires1 |
⊢ ( 𝑏 ∘ ( I ↾ 𝑂 ) ) = ( 𝑏 ↾ 𝑂 ) |
26 |
24 25
|
eqtrdi |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑏 ∘ ( 𝑀 ↾ 𝑂 ) ) = ( 𝑏 ↾ 𝑂 ) ) |
27 |
22 26
|
syl5eq |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑏 ∘ 𝑀 ) ↾ 𝑂 ) = ( 𝑏 ↾ 𝑂 ) ) |
28 |
21 27
|
eqtr4d |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑎 = ( ( 𝑏 ∘ 𝑀 ) ↾ 𝑂 ) ) |
29 |
|
simpll1 |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑆 ∈ V ) |
30 |
|
oveq2 |
⊢ ( 𝑎 = 𝑆 → ( ℕ0 ↑m 𝑎 ) = ( ℕ0 ↑m 𝑆 ) ) |
31 |
|
oveq2 |
⊢ ( 𝑎 = 𝑆 → ( ℤ ↑m 𝑎 ) = ( ℤ ↑m 𝑆 ) ) |
32 |
30 31
|
sseq12d |
⊢ ( 𝑎 = 𝑆 → ( ( ℕ0 ↑m 𝑎 ) ⊆ ( ℤ ↑m 𝑎 ) ↔ ( ℕ0 ↑m 𝑆 ) ⊆ ( ℤ ↑m 𝑆 ) ) ) |
33 |
|
zex |
⊢ ℤ ∈ V |
34 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
35 |
|
mapss |
⊢ ( ( ℤ ∈ V ∧ ℕ0 ⊆ ℤ ) → ( ℕ0 ↑m 𝑎 ) ⊆ ( ℤ ↑m 𝑎 ) ) |
36 |
33 34 35
|
mp2an |
⊢ ( ℕ0 ↑m 𝑎 ) ⊆ ( ℤ ↑m 𝑎 ) |
37 |
32 36
|
vtoclg |
⊢ ( 𝑆 ∈ V → ( ℕ0 ↑m 𝑆 ) ⊆ ( ℤ ↑m 𝑆 ) ) |
38 |
29 37
|
syl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ℕ0 ↑m 𝑆 ) ⊆ ( ℤ ↑m 𝑆 ) ) |
39 |
|
simplr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) |
40 |
38 39
|
sseldd |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → 𝑏 ∈ ( ℤ ↑m 𝑆 ) ) |
41 |
|
coeq1 |
⊢ ( 𝑑 = 𝑏 → ( 𝑑 ∘ 𝑀 ) = ( 𝑏 ∘ 𝑀 ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝑑 = 𝑏 → ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) = ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) ) |
43 |
|
eqid |
⊢ ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) = ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) |
44 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) ∈ V |
45 |
42 43 44
|
fvmpt |
⊢ ( 𝑏 ∈ ( ℤ ↑m 𝑆 ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) ) |
46 |
40 45
|
syl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) ) |
47 |
|
simprr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) |
48 |
46 47
|
eqtr3d |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) = 0 ) |
49 |
|
reseq1 |
⊢ ( 𝑐 = ( 𝑏 ∘ 𝑀 ) → ( 𝑐 ↾ 𝑂 ) = ( ( 𝑏 ∘ 𝑀 ) ↾ 𝑂 ) ) |
50 |
49
|
eqeq2d |
⊢ ( 𝑐 = ( 𝑏 ∘ 𝑀 ) → ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ↔ 𝑎 = ( ( 𝑏 ∘ 𝑀 ) ↾ 𝑂 ) ) ) |
51 |
|
fveqeq2 |
⊢ ( 𝑐 = ( 𝑏 ∘ 𝑀 ) → ( ( 𝑃 ‘ 𝑐 ) = 0 ↔ ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) = 0 ) ) |
52 |
50 51
|
anbi12d |
⊢ ( 𝑐 = ( 𝑏 ∘ 𝑀 ) → ( ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ↔ ( 𝑎 = ( ( 𝑏 ∘ 𝑀 ) ↾ 𝑂 ) ∧ ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) = 0 ) ) ) |
53 |
52
|
rspcev |
⊢ ( ( ( 𝑏 ∘ 𝑀 ) ∈ ( ℕ0 ↑m 𝑇 ) ∧ ( 𝑎 = ( ( 𝑏 ∘ 𝑀 ) ↾ 𝑂 ) ∧ ( 𝑃 ‘ ( 𝑏 ∘ 𝑀 ) ) = 0 ) ) → ∃ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) |
54 |
20 28 48 53
|
syl12anc |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ) ∧ ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) → ∃ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) |
55 |
54
|
rexlimdva2 |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → ( ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) → ∃ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) ) |
56 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) |
57 |
16
|
adantr |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → 𝑇 ∈ V ) |
58 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ↔ 𝑐 : 𝑇 ⟶ ℕ0 ) ) |
59 |
2 57 58
|
sylancr |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ↔ 𝑐 : 𝑇 ⟶ ℕ0 ) ) |
60 |
56 59
|
mpbid |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → 𝑐 : 𝑇 ⟶ ℕ0 ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → 𝑐 : 𝑇 ⟶ ℕ0 ) |
62 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → 𝑀 : 𝑇 –1-1→ 𝑆 ) |
63 |
|
f1cnv |
⊢ ( 𝑀 : 𝑇 –1-1→ 𝑆 → ◡ 𝑀 : ran 𝑀 –1-1-onto→ 𝑇 ) |
64 |
|
f1of |
⊢ ( ◡ 𝑀 : ran 𝑀 –1-1-onto→ 𝑇 → ◡ 𝑀 : ran 𝑀 ⟶ 𝑇 ) |
65 |
62 63 64
|
3syl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ◡ 𝑀 : ran 𝑀 ⟶ 𝑇 ) |
66 |
|
fco |
⊢ ( ( 𝑐 : 𝑇 ⟶ ℕ0 ∧ ◡ 𝑀 : ran 𝑀 ⟶ 𝑇 ) → ( 𝑐 ∘ ◡ 𝑀 ) : ran 𝑀 ⟶ ℕ0 ) |
67 |
61 65 66
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( 𝑐 ∘ ◡ 𝑀 ) : ran 𝑀 ⟶ ℕ0 ) |
68 |
|
c0ex |
⊢ 0 ∈ V |
69 |
68
|
fconst |
⊢ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 } |
70 |
69
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 } ) |
71 |
|
disjdif |
⊢ ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ |
72 |
71
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ ) |
73 |
|
fun |
⊢ ( ( ( ( 𝑐 ∘ ◡ 𝑀 ) : ran 𝑀 ⟶ ℕ0 ∧ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 } ) ∧ ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ) |
74 |
67 70 72 73
|
syl21anc |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ) |
75 |
|
frn |
⊢ ( 𝑀 : 𝑇 ⟶ 𝑆 → ran 𝑀 ⊆ 𝑆 ) |
76 |
9 10 75
|
3syl |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → ran 𝑀 ⊆ 𝑆 ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ran 𝑀 ⊆ 𝑆 ) |
78 |
|
undif |
⊢ ( ran 𝑀 ⊆ 𝑆 ↔ ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) = 𝑆 ) |
79 |
77 78
|
sylib |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) = 𝑆 ) |
80 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
81 |
|
snssi |
⊢ ( 0 ∈ ℕ0 → { 0 } ⊆ ℕ0 ) |
82 |
80 81
|
ax-mp |
⊢ { 0 } ⊆ ℕ0 |
83 |
|
ssequn2 |
⊢ ( { 0 } ⊆ ℕ0 ↔ ( ℕ0 ∪ { 0 } ) = ℕ0 ) |
84 |
82 83
|
mpbi |
⊢ ( ℕ0 ∪ { 0 } ) = ℕ0 |
85 |
84
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ℕ0 ∪ { 0 } ) = ℕ0 ) |
86 |
79 85
|
feq23d |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) ) |
87 |
74 86
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) |
88 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ 𝑆 ∈ V ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0 ↑m 𝑆 ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) ) |
89 |
2 3 88
|
sylancr |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0 ↑m 𝑆 ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) ) |
90 |
89
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0 ↑m 𝑆 ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℕ0 ) ) |
91 |
87 90
|
mpbird |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0 ↑m 𝑆 ) ) |
92 |
|
simprl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → 𝑎 = ( 𝑐 ↾ 𝑂 ) ) |
93 |
|
resundir |
⊢ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ↾ 𝑂 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) ) |
94 |
|
resco |
⊢ ( ( 𝑐 ∘ ◡ 𝑀 ) ↾ 𝑂 ) = ( 𝑐 ∘ ( ◡ 𝑀 ↾ 𝑂 ) ) |
95 |
|
simpl2 |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → 𝑀 : 𝑇 –1-1→ 𝑆 ) |
96 |
|
df-f1 |
⊢ ( 𝑀 : 𝑇 –1-1→ 𝑆 ↔ ( 𝑀 : 𝑇 ⟶ 𝑆 ∧ Fun ◡ 𝑀 ) ) |
97 |
96
|
simprbi |
⊢ ( 𝑀 : 𝑇 –1-1→ 𝑆 → Fun ◡ 𝑀 ) |
98 |
|
funcnvres |
⊢ ( Fun ◡ 𝑀 → ◡ ( 𝑀 ↾ 𝑂 ) = ( ◡ 𝑀 ↾ ( 𝑀 “ 𝑂 ) ) ) |
99 |
95 97 98
|
3syl |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ◡ ( 𝑀 ↾ 𝑂 ) = ( ◡ 𝑀 ↾ ( 𝑀 “ 𝑂 ) ) ) |
100 |
|
simpl3 |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) |
101 |
100
|
cnveqd |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ◡ ( 𝑀 ↾ 𝑂 ) = ◡ ( I ↾ 𝑂 ) ) |
102 |
|
df-ima |
⊢ ( 𝑀 “ 𝑂 ) = ran ( 𝑀 ↾ 𝑂 ) |
103 |
100
|
rneqd |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ran ( 𝑀 ↾ 𝑂 ) = ran ( I ↾ 𝑂 ) ) |
104 |
|
rnresi |
⊢ ran ( I ↾ 𝑂 ) = 𝑂 |
105 |
103 104
|
eqtrdi |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ran ( 𝑀 ↾ 𝑂 ) = 𝑂 ) |
106 |
102 105
|
syl5eq |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑀 “ 𝑂 ) = 𝑂 ) |
107 |
106
|
reseq2d |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( ◡ 𝑀 ↾ ( 𝑀 “ 𝑂 ) ) = ( ◡ 𝑀 ↾ 𝑂 ) ) |
108 |
99 101 107
|
3eqtr3d |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ◡ ( I ↾ 𝑂 ) = ( ◡ 𝑀 ↾ 𝑂 ) ) |
109 |
|
cnvresid |
⊢ ◡ ( I ↾ 𝑂 ) = ( I ↾ 𝑂 ) |
110 |
108 109
|
eqtr3di |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( ◡ 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) |
111 |
110
|
coeq2d |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑐 ∘ ( ◡ 𝑀 ↾ 𝑂 ) ) = ( 𝑐 ∘ ( I ↾ 𝑂 ) ) ) |
112 |
|
coires1 |
⊢ ( 𝑐 ∘ ( I ↾ 𝑂 ) ) = ( 𝑐 ↾ 𝑂 ) |
113 |
111 112
|
eqtrdi |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑐 ∘ ( ◡ 𝑀 ↾ 𝑂 ) ) = ( 𝑐 ↾ 𝑂 ) ) |
114 |
94 113
|
syl5eq |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ↾ 𝑂 ) = ( 𝑐 ↾ 𝑂 ) ) |
115 |
|
dmres |
⊢ dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ( 𝑂 ∩ dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) |
116 |
68
|
snnz |
⊢ { 0 } ≠ ∅ |
117 |
|
dmxp |
⊢ ( { 0 } ≠ ∅ → dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) = ( 𝑆 ∖ ran 𝑀 ) ) |
118 |
116 117
|
ax-mp |
⊢ dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) = ( 𝑆 ∖ ran 𝑀 ) |
119 |
118
|
ineq2i |
⊢ ( 𝑂 ∩ dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) = ( 𝑂 ∩ ( 𝑆 ∖ ran 𝑀 ) ) |
120 |
|
inss1 |
⊢ ( 𝑂 ∩ 𝑆 ) ⊆ 𝑂 |
121 |
103 104
|
eqtr2di |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → 𝑂 = ran ( 𝑀 ↾ 𝑂 ) ) |
122 |
|
resss |
⊢ ( 𝑀 ↾ 𝑂 ) ⊆ 𝑀 |
123 |
|
rnss |
⊢ ( ( 𝑀 ↾ 𝑂 ) ⊆ 𝑀 → ran ( 𝑀 ↾ 𝑂 ) ⊆ ran 𝑀 ) |
124 |
122 123
|
mp1i |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ran ( 𝑀 ↾ 𝑂 ) ⊆ ran 𝑀 ) |
125 |
121 124
|
eqsstrd |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → 𝑂 ⊆ ran 𝑀 ) |
126 |
120 125
|
sstrid |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑂 ∩ 𝑆 ) ⊆ ran 𝑀 ) |
127 |
|
inssdif0 |
⊢ ( ( 𝑂 ∩ 𝑆 ) ⊆ ran 𝑀 ↔ ( 𝑂 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ ) |
128 |
126 127
|
sylib |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑂 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ ) |
129 |
119 128
|
syl5eq |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑂 ∩ dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) = ∅ ) |
130 |
115 129
|
syl5eq |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ) |
131 |
|
relres |
⊢ Rel ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) |
132 |
|
reldm0 |
⊢ ( Rel ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) → ( ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ↔ dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ) ) |
133 |
131 132
|
ax-mp |
⊢ ( ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ↔ dom ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ) |
134 |
130 133
|
sylibr |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) = ∅ ) |
135 |
114 134
|
uneq12d |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ↾ 𝑂 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ↾ 𝑂 ) ) = ( ( 𝑐 ↾ 𝑂 ) ∪ ∅ ) ) |
136 |
93 135
|
syl5eq |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) = ( ( 𝑐 ↾ 𝑂 ) ∪ ∅ ) ) |
137 |
|
un0 |
⊢ ( ( 𝑐 ↾ 𝑂 ) ∪ ∅ ) = ( 𝑐 ↾ 𝑂 ) |
138 |
136 137
|
eqtr2di |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → ( 𝑐 ↾ 𝑂 ) = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ) |
139 |
138
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( 𝑐 ↾ 𝑂 ) = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ) |
140 |
92 139
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → 𝑎 = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ) |
141 |
|
fss |
⊢ ( ( 𝑐 : 𝑇 ⟶ ℕ0 ∧ ℕ0 ⊆ ℤ ) → 𝑐 : 𝑇 ⟶ ℤ ) |
142 |
60 34 141
|
sylancl |
⊢ ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) → 𝑐 : 𝑇 ⟶ ℤ ) |
143 |
142
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → 𝑐 : 𝑇 ⟶ ℤ ) |
144 |
|
fco |
⊢ ( ( 𝑐 : 𝑇 ⟶ ℤ ∧ ◡ 𝑀 : ran 𝑀 ⟶ 𝑇 ) → ( 𝑐 ∘ ◡ 𝑀 ) : ran 𝑀 ⟶ ℤ ) |
145 |
143 65 144
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( 𝑐 ∘ ◡ 𝑀 ) : ran 𝑀 ⟶ ℤ ) |
146 |
|
fun |
⊢ ( ( ( ( 𝑐 ∘ ◡ 𝑀 ) : ran 𝑀 ⟶ ℤ ∧ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) : ( 𝑆 ∖ ran 𝑀 ) ⟶ { 0 } ) ∧ ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) = ∅ ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℤ ∪ { 0 } ) ) |
147 |
145 70 72 146
|
syl21anc |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℤ ∪ { 0 } ) ) |
148 |
|
0z |
⊢ 0 ∈ ℤ |
149 |
|
snssi |
⊢ ( 0 ∈ ℤ → { 0 } ⊆ ℤ ) |
150 |
148 149
|
ax-mp |
⊢ { 0 } ⊆ ℤ |
151 |
|
ssequn2 |
⊢ ( { 0 } ⊆ ℤ ↔ ( ℤ ∪ { 0 } ) = ℤ ) |
152 |
150 151
|
mpbi |
⊢ ( ℤ ∪ { 0 } ) = ℤ |
153 |
152
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ℤ ∪ { 0 } ) = ℤ ) |
154 |
79 153
|
feq23d |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : ( ran 𝑀 ∪ ( 𝑆 ∖ ran 𝑀 ) ) ⟶ ( ℤ ∪ { 0 } ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) ) |
155 |
147 154
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) |
156 |
|
elmapg |
⊢ ( ( ℤ ∈ V ∧ 𝑆 ∈ V ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) ) |
157 |
33 3 156
|
sylancr |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) ) |
158 |
157
|
ad2antrr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) ↔ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) : 𝑆 ⟶ ℤ ) ) |
159 |
155 158
|
mpbird |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) ) |
160 |
|
coeq1 |
⊢ ( 𝑑 = ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑑 ∘ 𝑀 ) = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) |
161 |
160
|
fveq2d |
⊢ ( 𝑑 = ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) = ( 𝑃 ‘ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) ) |
162 |
|
fvex |
⊢ ( 𝑃 ‘ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) ∈ V |
163 |
161 43 162
|
fvmpt |
⊢ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℤ ↑m 𝑆 ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = ( 𝑃 ‘ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) ) |
164 |
159 163
|
syl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = ( 𝑃 ‘ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) ) |
165 |
|
coundir |
⊢ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∘ 𝑀 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) ) |
166 |
|
coass |
⊢ ( ( 𝑐 ∘ ◡ 𝑀 ) ∘ 𝑀 ) = ( 𝑐 ∘ ( ◡ 𝑀 ∘ 𝑀 ) ) |
167 |
|
f1cocnv1 |
⊢ ( 𝑀 : 𝑇 –1-1→ 𝑆 → ( ◡ 𝑀 ∘ 𝑀 ) = ( I ↾ 𝑇 ) ) |
168 |
167
|
coeq2d |
⊢ ( 𝑀 : 𝑇 –1-1→ 𝑆 → ( 𝑐 ∘ ( ◡ 𝑀 ∘ 𝑀 ) ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ) |
169 |
62 168
|
syl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( 𝑐 ∘ ( ◡ 𝑀 ∘ 𝑀 ) ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ) |
170 |
166 169
|
syl5eq |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ◡ 𝑀 ) ∘ 𝑀 ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ) |
171 |
118
|
ineq1i |
⊢ ( dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∩ ran 𝑀 ) = ( ( 𝑆 ∖ ran 𝑀 ) ∩ ran 𝑀 ) |
172 |
|
incom |
⊢ ( ( 𝑆 ∖ ran 𝑀 ) ∩ ran 𝑀 ) = ( ran 𝑀 ∩ ( 𝑆 ∖ ran 𝑀 ) ) |
173 |
171 172 71
|
3eqtri |
⊢ ( dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∩ ran 𝑀 ) = ∅ |
174 |
|
coeq0 |
⊢ ( ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) = ∅ ↔ ( dom ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∩ ran 𝑀 ) = ∅ ) |
175 |
173 174
|
mpbir |
⊢ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) = ∅ |
176 |
175
|
a1i |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) = ∅ ) |
177 |
170 176
|
uneq12d |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∘ 𝑀 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) ) = ( ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ∪ ∅ ) ) |
178 |
|
un0 |
⊢ ( ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ∪ ∅ ) = ( 𝑐 ∘ ( I ↾ 𝑇 ) ) |
179 |
|
fcoi1 |
⊢ ( 𝑐 : 𝑇 ⟶ ℕ0 → ( 𝑐 ∘ ( I ↾ 𝑇 ) ) = 𝑐 ) |
180 |
61 179
|
syl |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( 𝑐 ∘ ( I ↾ 𝑇 ) ) = 𝑐 ) |
181 |
178 180
|
syl5eq |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑐 ∘ ( I ↾ 𝑇 ) ) ∪ ∅ ) = 𝑐 ) |
182 |
177 181
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∘ 𝑀 ) ∪ ( ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ∘ 𝑀 ) ) = 𝑐 ) |
183 |
165 182
|
syl5eq |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) = 𝑐 ) |
184 |
183
|
fveq2d |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( 𝑃 ‘ ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∘ 𝑀 ) ) = ( 𝑃 ‘ 𝑐 ) ) |
185 |
|
simprr |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( 𝑃 ‘ 𝑐 ) = 0 ) |
186 |
164 184 185
|
3eqtrd |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 ) |
187 |
|
reseq1 |
⊢ ( 𝑏 = ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑏 ↾ 𝑂 ) = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ) |
188 |
187
|
eqeq2d |
⊢ ( 𝑏 = ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ↔ 𝑎 = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ) ) |
189 |
|
fveqeq2 |
⊢ ( 𝑏 = ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ↔ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 ) ) |
190 |
188 189
|
anbi12d |
⊢ ( 𝑏 = ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) → ( ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ↔ ( 𝑎 = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 ) ) ) |
191 |
190
|
rspcev |
⊢ ( ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ∈ ( ℕ0 ↑m 𝑆 ) ∧ ( 𝑎 = ( ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ ( ( 𝑐 ∘ ◡ 𝑀 ) ∪ ( ( 𝑆 ∖ ran 𝑀 ) × { 0 } ) ) ) = 0 ) ) → ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) |
192 |
91 140 186 191
|
syl12anc |
⊢ ( ( ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) ∧ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ) ∧ ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) → ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) |
193 |
192
|
rexlimdva2 |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → ( ∃ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) → ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ) ) |
194 |
55 193
|
impbid |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → ( ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) ↔ ∃ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) ) ) |
195 |
194
|
abbidv |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑀 ↾ 𝑂 ) = ( I ↾ 𝑂 ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑎 = ( 𝑏 ↾ 𝑂 ) ∧ ( ( 𝑑 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑃 ‘ ( 𝑑 ∘ 𝑀 ) ) ) ‘ 𝑏 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑐 ∈ ( ℕ0 ↑m 𝑇 ) ( 𝑎 = ( 𝑐 ↾ 𝑂 ) ∧ ( 𝑃 ‘ 𝑐 ) = 0 ) } ) |