| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) -> b e. ( NN0 ^m S ) ) |
| 2 |
|
nn0ex |
|- NN0 e. _V |
| 3 |
|
simp1 |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> S e. _V ) |
| 4 |
3
|
adantr |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) -> S e. _V ) |
| 5 |
|
elmapg |
|- ( ( NN0 e. _V /\ S e. _V ) -> ( b e. ( NN0 ^m S ) <-> b : S --> NN0 ) ) |
| 6 |
2 4 5
|
sylancr |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) -> ( b e. ( NN0 ^m S ) <-> b : S --> NN0 ) ) |
| 7 |
1 6
|
mpbid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) -> b : S --> NN0 ) |
| 8 |
7
|
adantr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> b : S --> NN0 ) |
| 9 |
|
simp2 |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> M : T -1-1-> S ) |
| 10 |
|
f1f |
|- ( M : T -1-1-> S -> M : T --> S ) |
| 11 |
9 10
|
syl |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> M : T --> S ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> M : T --> S ) |
| 13 |
|
fco |
|- ( ( b : S --> NN0 /\ M : T --> S ) -> ( b o. M ) : T --> NN0 ) |
| 14 |
8 12 13
|
syl2anc |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( b o. M ) : T --> NN0 ) |
| 15 |
|
f1dmex |
|- ( ( M : T -1-1-> S /\ S e. _V ) -> T e. _V ) |
| 16 |
9 3 15
|
syl2anc |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> T e. _V ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> T e. _V ) |
| 18 |
|
elmapg |
|- ( ( NN0 e. _V /\ T e. _V ) -> ( ( b o. M ) e. ( NN0 ^m T ) <-> ( b o. M ) : T --> NN0 ) ) |
| 19 |
2 17 18
|
sylancr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( ( b o. M ) e. ( NN0 ^m T ) <-> ( b o. M ) : T --> NN0 ) ) |
| 20 |
14 19
|
mpbird |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( b o. M ) e. ( NN0 ^m T ) ) |
| 21 |
|
simprl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> a = ( b |` O ) ) |
| 22 |
|
resco |
|- ( ( b o. M ) |` O ) = ( b o. ( M |` O ) ) |
| 23 |
|
simpll3 |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( M |` O ) = ( _I |` O ) ) |
| 24 |
23
|
coeq2d |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( b o. ( M |` O ) ) = ( b o. ( _I |` O ) ) ) |
| 25 |
|
coires1 |
|- ( b o. ( _I |` O ) ) = ( b |` O ) |
| 26 |
24 25
|
eqtrdi |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( b o. ( M |` O ) ) = ( b |` O ) ) |
| 27 |
22 26
|
eqtrid |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( ( b o. M ) |` O ) = ( b |` O ) ) |
| 28 |
21 27
|
eqtr4d |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> a = ( ( b o. M ) |` O ) ) |
| 29 |
|
simpll1 |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> S e. _V ) |
| 30 |
|
oveq2 |
|- ( a = S -> ( NN0 ^m a ) = ( NN0 ^m S ) ) |
| 31 |
|
oveq2 |
|- ( a = S -> ( ZZ ^m a ) = ( ZZ ^m S ) ) |
| 32 |
30 31
|
sseq12d |
|- ( a = S -> ( ( NN0 ^m a ) C_ ( ZZ ^m a ) <-> ( NN0 ^m S ) C_ ( ZZ ^m S ) ) ) |
| 33 |
|
zex |
|- ZZ e. _V |
| 34 |
|
nn0ssz |
|- NN0 C_ ZZ |
| 35 |
|
mapss |
|- ( ( ZZ e. _V /\ NN0 C_ ZZ ) -> ( NN0 ^m a ) C_ ( ZZ ^m a ) ) |
| 36 |
33 34 35
|
mp2an |
|- ( NN0 ^m a ) C_ ( ZZ ^m a ) |
| 37 |
32 36
|
vtoclg |
|- ( S e. _V -> ( NN0 ^m S ) C_ ( ZZ ^m S ) ) |
| 38 |
29 37
|
syl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( NN0 ^m S ) C_ ( ZZ ^m S ) ) |
| 39 |
|
simplr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> b e. ( NN0 ^m S ) ) |
| 40 |
38 39
|
sseldd |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> b e. ( ZZ ^m S ) ) |
| 41 |
|
coeq1 |
|- ( d = b -> ( d o. M ) = ( b o. M ) ) |
| 42 |
41
|
fveq2d |
|- ( d = b -> ( P ` ( d o. M ) ) = ( P ` ( b o. M ) ) ) |
| 43 |
|
eqid |
|- ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) = ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) |
| 44 |
|
fvex |
|- ( P ` ( b o. M ) ) e. _V |
| 45 |
42 43 44
|
fvmpt |
|- ( b e. ( ZZ ^m S ) -> ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = ( P ` ( b o. M ) ) ) |
| 46 |
40 45
|
syl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = ( P ` ( b o. M ) ) ) |
| 47 |
|
simprr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) |
| 48 |
46 47
|
eqtr3d |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> ( P ` ( b o. M ) ) = 0 ) |
| 49 |
|
reseq1 |
|- ( c = ( b o. M ) -> ( c |` O ) = ( ( b o. M ) |` O ) ) |
| 50 |
49
|
eqeq2d |
|- ( c = ( b o. M ) -> ( a = ( c |` O ) <-> a = ( ( b o. M ) |` O ) ) ) |
| 51 |
|
fveqeq2 |
|- ( c = ( b o. M ) -> ( ( P ` c ) = 0 <-> ( P ` ( b o. M ) ) = 0 ) ) |
| 52 |
50 51
|
anbi12d |
|- ( c = ( b o. M ) -> ( ( a = ( c |` O ) /\ ( P ` c ) = 0 ) <-> ( a = ( ( b o. M ) |` O ) /\ ( P ` ( b o. M ) ) = 0 ) ) ) |
| 53 |
52
|
rspcev |
|- ( ( ( b o. M ) e. ( NN0 ^m T ) /\ ( a = ( ( b o. M ) |` O ) /\ ( P ` ( b o. M ) ) = 0 ) ) -> E. c e. ( NN0 ^m T ) ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) |
| 54 |
20 28 48 53
|
syl12anc |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ b e. ( NN0 ^m S ) ) /\ ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) -> E. c e. ( NN0 ^m T ) ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) |
| 55 |
54
|
rexlimdva2 |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> ( E. b e. ( NN0 ^m S ) ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) -> E. c e. ( NN0 ^m T ) ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) ) |
| 56 |
|
simpr |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> c e. ( NN0 ^m T ) ) |
| 57 |
16
|
adantr |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> T e. _V ) |
| 58 |
|
elmapg |
|- ( ( NN0 e. _V /\ T e. _V ) -> ( c e. ( NN0 ^m T ) <-> c : T --> NN0 ) ) |
| 59 |
2 57 58
|
sylancr |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( c e. ( NN0 ^m T ) <-> c : T --> NN0 ) ) |
| 60 |
56 59
|
mpbid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> c : T --> NN0 ) |
| 61 |
60
|
adantr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> c : T --> NN0 ) |
| 62 |
9
|
ad2antrr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> M : T -1-1-> S ) |
| 63 |
|
f1cnv |
|- ( M : T -1-1-> S -> `' M : ran M -1-1-onto-> T ) |
| 64 |
|
f1of |
|- ( `' M : ran M -1-1-onto-> T -> `' M : ran M --> T ) |
| 65 |
62 63 64
|
3syl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> `' M : ran M --> T ) |
| 66 |
|
fco |
|- ( ( c : T --> NN0 /\ `' M : ran M --> T ) -> ( c o. `' M ) : ran M --> NN0 ) |
| 67 |
61 65 66
|
syl2anc |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( c o. `' M ) : ran M --> NN0 ) |
| 68 |
|
c0ex |
|- 0 e. _V |
| 69 |
68
|
fconst |
|- ( ( S \ ran M ) X. { 0 } ) : ( S \ ran M ) --> { 0 } |
| 70 |
69
|
a1i |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( S \ ran M ) X. { 0 } ) : ( S \ ran M ) --> { 0 } ) |
| 71 |
|
disjdif |
|- ( ran M i^i ( S \ ran M ) ) = (/) |
| 72 |
71
|
a1i |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ran M i^i ( S \ ran M ) ) = (/) ) |
| 73 |
|
fun |
|- ( ( ( ( c o. `' M ) : ran M --> NN0 /\ ( ( S \ ran M ) X. { 0 } ) : ( S \ ran M ) --> { 0 } ) /\ ( ran M i^i ( S \ ran M ) ) = (/) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : ( ran M u. ( S \ ran M ) ) --> ( NN0 u. { 0 } ) ) |
| 74 |
67 70 72 73
|
syl21anc |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : ( ran M u. ( S \ ran M ) ) --> ( NN0 u. { 0 } ) ) |
| 75 |
|
frn |
|- ( M : T --> S -> ran M C_ S ) |
| 76 |
9 10 75
|
3syl |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> ran M C_ S ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ran M C_ S ) |
| 78 |
|
undif |
|- ( ran M C_ S <-> ( ran M u. ( S \ ran M ) ) = S ) |
| 79 |
77 78
|
sylib |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ran M u. ( S \ ran M ) ) = S ) |
| 80 |
|
0nn0 |
|- 0 e. NN0 |
| 81 |
|
snssi |
|- ( 0 e. NN0 -> { 0 } C_ NN0 ) |
| 82 |
80 81
|
ax-mp |
|- { 0 } C_ NN0 |
| 83 |
|
ssequn2 |
|- ( { 0 } C_ NN0 <-> ( NN0 u. { 0 } ) = NN0 ) |
| 84 |
82 83
|
mpbi |
|- ( NN0 u. { 0 } ) = NN0 |
| 85 |
84
|
a1i |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( NN0 u. { 0 } ) = NN0 ) |
| 86 |
79 85
|
feq23d |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : ( ran M u. ( S \ ran M ) ) --> ( NN0 u. { 0 } ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> NN0 ) ) |
| 87 |
74 86
|
mpbid |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> NN0 ) |
| 88 |
|
elmapg |
|- ( ( NN0 e. _V /\ S e. _V ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( NN0 ^m S ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> NN0 ) ) |
| 89 |
2 3 88
|
sylancr |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( NN0 ^m S ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> NN0 ) ) |
| 90 |
89
|
ad2antrr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( NN0 ^m S ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> NN0 ) ) |
| 91 |
87 90
|
mpbird |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( NN0 ^m S ) ) |
| 92 |
|
simprl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> a = ( c |` O ) ) |
| 93 |
|
resundir |
|- ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) = ( ( ( c o. `' M ) |` O ) u. ( ( ( S \ ran M ) X. { 0 } ) |` O ) ) |
| 94 |
|
resco |
|- ( ( c o. `' M ) |` O ) = ( c o. ( `' M |` O ) ) |
| 95 |
|
simpl2 |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> M : T -1-1-> S ) |
| 96 |
|
df-f1 |
|- ( M : T -1-1-> S <-> ( M : T --> S /\ Fun `' M ) ) |
| 97 |
96
|
simprbi |
|- ( M : T -1-1-> S -> Fun `' M ) |
| 98 |
|
funcnvres |
|- ( Fun `' M -> `' ( M |` O ) = ( `' M |` ( M " O ) ) ) |
| 99 |
95 97 98
|
3syl |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> `' ( M |` O ) = ( `' M |` ( M " O ) ) ) |
| 100 |
|
simpl3 |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( M |` O ) = ( _I |` O ) ) |
| 101 |
100
|
cnveqd |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> `' ( M |` O ) = `' ( _I |` O ) ) |
| 102 |
|
df-ima |
|- ( M " O ) = ran ( M |` O ) |
| 103 |
100
|
rneqd |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ran ( M |` O ) = ran ( _I |` O ) ) |
| 104 |
|
rnresi |
|- ran ( _I |` O ) = O |
| 105 |
103 104
|
eqtrdi |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ran ( M |` O ) = O ) |
| 106 |
102 105
|
eqtrid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( M " O ) = O ) |
| 107 |
106
|
reseq2d |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( `' M |` ( M " O ) ) = ( `' M |` O ) ) |
| 108 |
99 101 107
|
3eqtr3d |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> `' ( _I |` O ) = ( `' M |` O ) ) |
| 109 |
|
cnvresid |
|- `' ( _I |` O ) = ( _I |` O ) |
| 110 |
108 109
|
eqtr3di |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( `' M |` O ) = ( _I |` O ) ) |
| 111 |
110
|
coeq2d |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( c o. ( `' M |` O ) ) = ( c o. ( _I |` O ) ) ) |
| 112 |
|
coires1 |
|- ( c o. ( _I |` O ) ) = ( c |` O ) |
| 113 |
111 112
|
eqtrdi |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( c o. ( `' M |` O ) ) = ( c |` O ) ) |
| 114 |
94 113
|
eqtrid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( ( c o. `' M ) |` O ) = ( c |` O ) ) |
| 115 |
|
dmres |
|- dom ( ( ( S \ ran M ) X. { 0 } ) |` O ) = ( O i^i dom ( ( S \ ran M ) X. { 0 } ) ) |
| 116 |
68
|
snnz |
|- { 0 } =/= (/) |
| 117 |
|
dmxp |
|- ( { 0 } =/= (/) -> dom ( ( S \ ran M ) X. { 0 } ) = ( S \ ran M ) ) |
| 118 |
116 117
|
ax-mp |
|- dom ( ( S \ ran M ) X. { 0 } ) = ( S \ ran M ) |
| 119 |
118
|
ineq2i |
|- ( O i^i dom ( ( S \ ran M ) X. { 0 } ) ) = ( O i^i ( S \ ran M ) ) |
| 120 |
|
inss1 |
|- ( O i^i S ) C_ O |
| 121 |
103 104
|
eqtr2di |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> O = ran ( M |` O ) ) |
| 122 |
|
resss |
|- ( M |` O ) C_ M |
| 123 |
|
rnss |
|- ( ( M |` O ) C_ M -> ran ( M |` O ) C_ ran M ) |
| 124 |
122 123
|
mp1i |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ran ( M |` O ) C_ ran M ) |
| 125 |
121 124
|
eqsstrd |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> O C_ ran M ) |
| 126 |
120 125
|
sstrid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( O i^i S ) C_ ran M ) |
| 127 |
|
inssdif0 |
|- ( ( O i^i S ) C_ ran M <-> ( O i^i ( S \ ran M ) ) = (/) ) |
| 128 |
126 127
|
sylib |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( O i^i ( S \ ran M ) ) = (/) ) |
| 129 |
119 128
|
eqtrid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( O i^i dom ( ( S \ ran M ) X. { 0 } ) ) = (/) ) |
| 130 |
115 129
|
eqtrid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> dom ( ( ( S \ ran M ) X. { 0 } ) |` O ) = (/) ) |
| 131 |
|
relres |
|- Rel ( ( ( S \ ran M ) X. { 0 } ) |` O ) |
| 132 |
|
reldm0 |
|- ( Rel ( ( ( S \ ran M ) X. { 0 } ) |` O ) -> ( ( ( ( S \ ran M ) X. { 0 } ) |` O ) = (/) <-> dom ( ( ( S \ ran M ) X. { 0 } ) |` O ) = (/) ) ) |
| 133 |
131 132
|
ax-mp |
|- ( ( ( ( S \ ran M ) X. { 0 } ) |` O ) = (/) <-> dom ( ( ( S \ ran M ) X. { 0 } ) |` O ) = (/) ) |
| 134 |
130 133
|
sylibr |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( ( ( S \ ran M ) X. { 0 } ) |` O ) = (/) ) |
| 135 |
114 134
|
uneq12d |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( ( ( c o. `' M ) |` O ) u. ( ( ( S \ ran M ) X. { 0 } ) |` O ) ) = ( ( c |` O ) u. (/) ) ) |
| 136 |
93 135
|
eqtrid |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) = ( ( c |` O ) u. (/) ) ) |
| 137 |
|
un0 |
|- ( ( c |` O ) u. (/) ) = ( c |` O ) |
| 138 |
136 137
|
eqtr2di |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> ( c |` O ) = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) ) |
| 139 |
138
|
adantr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( c |` O ) = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) ) |
| 140 |
92 139
|
eqtrd |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> a = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) ) |
| 141 |
|
fss |
|- ( ( c : T --> NN0 /\ NN0 C_ ZZ ) -> c : T --> ZZ ) |
| 142 |
60 34 141
|
sylancl |
|- ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) -> c : T --> ZZ ) |
| 143 |
142
|
adantr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> c : T --> ZZ ) |
| 144 |
|
fco |
|- ( ( c : T --> ZZ /\ `' M : ran M --> T ) -> ( c o. `' M ) : ran M --> ZZ ) |
| 145 |
143 65 144
|
syl2anc |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( c o. `' M ) : ran M --> ZZ ) |
| 146 |
|
fun |
|- ( ( ( ( c o. `' M ) : ran M --> ZZ /\ ( ( S \ ran M ) X. { 0 } ) : ( S \ ran M ) --> { 0 } ) /\ ( ran M i^i ( S \ ran M ) ) = (/) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : ( ran M u. ( S \ ran M ) ) --> ( ZZ u. { 0 } ) ) |
| 147 |
145 70 72 146
|
syl21anc |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : ( ran M u. ( S \ ran M ) ) --> ( ZZ u. { 0 } ) ) |
| 148 |
|
0z |
|- 0 e. ZZ |
| 149 |
|
snssi |
|- ( 0 e. ZZ -> { 0 } C_ ZZ ) |
| 150 |
148 149
|
ax-mp |
|- { 0 } C_ ZZ |
| 151 |
|
ssequn2 |
|- ( { 0 } C_ ZZ <-> ( ZZ u. { 0 } ) = ZZ ) |
| 152 |
150 151
|
mpbi |
|- ( ZZ u. { 0 } ) = ZZ |
| 153 |
152
|
a1i |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ZZ u. { 0 } ) = ZZ ) |
| 154 |
79 153
|
feq23d |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : ( ran M u. ( S \ ran M ) ) --> ( ZZ u. { 0 } ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> ZZ ) ) |
| 155 |
147 154
|
mpbid |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> ZZ ) |
| 156 |
|
elmapg |
|- ( ( ZZ e. _V /\ S e. _V ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( ZZ ^m S ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> ZZ ) ) |
| 157 |
33 3 156
|
sylancr |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( ZZ ^m S ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> ZZ ) ) |
| 158 |
157
|
ad2antrr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( ZZ ^m S ) <-> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) : S --> ZZ ) ) |
| 159 |
155 158
|
mpbird |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( ZZ ^m S ) ) |
| 160 |
|
coeq1 |
|- ( d = ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) -> ( d o. M ) = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) ) |
| 161 |
160
|
fveq2d |
|- ( d = ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) -> ( P ` ( d o. M ) ) = ( P ` ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) ) ) |
| 162 |
|
fvex |
|- ( P ` ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) ) e. _V |
| 163 |
161 43 162
|
fvmpt |
|- ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( ZZ ^m S ) -> ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) ) = ( P ` ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) ) ) |
| 164 |
159 163
|
syl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) ) = ( P ` ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) ) ) |
| 165 |
|
coundir |
|- ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) = ( ( ( c o. `' M ) o. M ) u. ( ( ( S \ ran M ) X. { 0 } ) o. M ) ) |
| 166 |
|
coass |
|- ( ( c o. `' M ) o. M ) = ( c o. ( `' M o. M ) ) |
| 167 |
|
f1cocnv1 |
|- ( M : T -1-1-> S -> ( `' M o. M ) = ( _I |` T ) ) |
| 168 |
167
|
coeq2d |
|- ( M : T -1-1-> S -> ( c o. ( `' M o. M ) ) = ( c o. ( _I |` T ) ) ) |
| 169 |
62 168
|
syl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( c o. ( `' M o. M ) ) = ( c o. ( _I |` T ) ) ) |
| 170 |
166 169
|
eqtrid |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. `' M ) o. M ) = ( c o. ( _I |` T ) ) ) |
| 171 |
118
|
ineq1i |
|- ( dom ( ( S \ ran M ) X. { 0 } ) i^i ran M ) = ( ( S \ ran M ) i^i ran M ) |
| 172 |
|
incom |
|- ( ( S \ ran M ) i^i ran M ) = ( ran M i^i ( S \ ran M ) ) |
| 173 |
171 172 71
|
3eqtri |
|- ( dom ( ( S \ ran M ) X. { 0 } ) i^i ran M ) = (/) |
| 174 |
|
coeq0 |
|- ( ( ( ( S \ ran M ) X. { 0 } ) o. M ) = (/) <-> ( dom ( ( S \ ran M ) X. { 0 } ) i^i ran M ) = (/) ) |
| 175 |
173 174
|
mpbir |
|- ( ( ( S \ ran M ) X. { 0 } ) o. M ) = (/) |
| 176 |
175
|
a1i |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( S \ ran M ) X. { 0 } ) o. M ) = (/) ) |
| 177 |
170 176
|
uneq12d |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( c o. `' M ) o. M ) u. ( ( ( S \ ran M ) X. { 0 } ) o. M ) ) = ( ( c o. ( _I |` T ) ) u. (/) ) ) |
| 178 |
|
un0 |
|- ( ( c o. ( _I |` T ) ) u. (/) ) = ( c o. ( _I |` T ) ) |
| 179 |
|
fcoi1 |
|- ( c : T --> NN0 -> ( c o. ( _I |` T ) ) = c ) |
| 180 |
61 179
|
syl |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( c o. ( _I |` T ) ) = c ) |
| 181 |
178 180
|
eqtrid |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( c o. ( _I |` T ) ) u. (/) ) = c ) |
| 182 |
177 181
|
eqtrd |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( c o. `' M ) o. M ) u. ( ( ( S \ ran M ) X. { 0 } ) o. M ) ) = c ) |
| 183 |
165 182
|
eqtrid |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) = c ) |
| 184 |
183
|
fveq2d |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( P ` ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) o. M ) ) = ( P ` c ) ) |
| 185 |
|
simprr |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( P ` c ) = 0 ) |
| 186 |
164 184 185
|
3eqtrd |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) ) = 0 ) |
| 187 |
|
reseq1 |
|- ( b = ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) -> ( b |` O ) = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) ) |
| 188 |
187
|
eqeq2d |
|- ( b = ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) -> ( a = ( b |` O ) <-> a = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) ) ) |
| 189 |
|
fveqeq2 |
|- ( b = ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) -> ( ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 <-> ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) ) = 0 ) ) |
| 190 |
188 189
|
anbi12d |
|- ( b = ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) -> ( ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) <-> ( a = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) ) = 0 ) ) ) |
| 191 |
190
|
rspcev |
|- ( ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) e. ( NN0 ^m S ) /\ ( a = ( ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` ( ( c o. `' M ) u. ( ( S \ ran M ) X. { 0 } ) ) ) = 0 ) ) -> E. b e. ( NN0 ^m S ) ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) |
| 192 |
91 140 186 191
|
syl12anc |
|- ( ( ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) /\ c e. ( NN0 ^m T ) ) /\ ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) -> E. b e. ( NN0 ^m S ) ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) |
| 193 |
192
|
rexlimdva2 |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> ( E. c e. ( NN0 ^m T ) ( a = ( c |` O ) /\ ( P ` c ) = 0 ) -> E. b e. ( NN0 ^m S ) ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) ) ) |
| 194 |
55 193
|
impbid |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> ( E. b e. ( NN0 ^m S ) ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) <-> E. c e. ( NN0 ^m T ) ( a = ( c |` O ) /\ ( P ` c ) = 0 ) ) ) |
| 195 |
194
|
abbidv |
|- ( ( S e. _V /\ M : T -1-1-> S /\ ( M |` O ) = ( _I |` O ) ) -> { a | E. b e. ( NN0 ^m S ) ( a = ( b |` O ) /\ ( ( d e. ( ZZ ^m S ) |-> ( P ` ( d o. M ) ) ) ` b ) = 0 ) } = { a | E. c e. ( NN0 ^m T ) ( a = ( c |` O ) /\ ( P ` c ) = 0 ) } ) |