| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) /\ P e. ( mzPoly ` ( 1 ... K ) ) ) -> N e. NN0 ) |
| 2 |
|
simp2 |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) /\ P e. ( mzPoly ` ( 1 ... K ) ) ) -> K e. ( ZZ>= ` N ) ) |
| 3 |
|
simp3 |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) /\ P e. ( mzPoly ` ( 1 ... K ) ) ) -> P e. ( mzPoly ` ( 1 ... K ) ) ) |
| 4 |
|
eqidd |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) /\ P e. ( mzPoly ` ( 1 ... K ) ) ) -> { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } ) |
| 5 |
|
fveq1 |
|- ( p = P -> ( p ` u ) = ( P ` u ) ) |
| 6 |
5
|
eqeq1d |
|- ( p = P -> ( ( p ` u ) = 0 <-> ( P ` u ) = 0 ) ) |
| 7 |
6
|
anbi2d |
|- ( p = P -> ( ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) <-> ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) ) ) |
| 8 |
7
|
rexbidv |
|- ( p = P -> ( E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) <-> E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) ) ) |
| 9 |
8
|
abbidv |
|- ( p = P -> { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } ) |
| 10 |
9
|
rspceeqv |
|- ( ( P e. ( mzPoly ` ( 1 ... K ) ) /\ { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } ) -> E. p e. ( mzPoly ` ( 1 ... K ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
| 11 |
3 4 10
|
syl2anc |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) /\ P e. ( mzPoly ` ( 1 ... K ) ) ) -> E. p e. ( mzPoly ` ( 1 ... K ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
| 12 |
|
oveq2 |
|- ( k = K -> ( 1 ... k ) = ( 1 ... K ) ) |
| 13 |
12
|
fveq2d |
|- ( k = K -> ( mzPoly ` ( 1 ... k ) ) = ( mzPoly ` ( 1 ... K ) ) ) |
| 14 |
12
|
oveq2d |
|- ( k = K -> ( NN0 ^m ( 1 ... k ) ) = ( NN0 ^m ( 1 ... K ) ) ) |
| 15 |
14
|
rexeqdv |
|- ( k = K -> ( E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) <-> E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) ) ) |
| 16 |
15
|
abbidv |
|- ( k = K -> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
| 17 |
16
|
eqeq2d |
|- ( k = K -> ( { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } <-> { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
| 18 |
13 17
|
rexeqbidv |
|- ( k = K -> ( E. p e. ( mzPoly ` ( 1 ... k ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } <-> E. p e. ( mzPoly ` ( 1 ... K ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
| 19 |
18
|
rspcev |
|- ( ( K e. ( ZZ>= ` N ) /\ E. p e. ( mzPoly ` ( 1 ... K ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) -> E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
| 20 |
2 11 19
|
syl2anc |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) /\ P e. ( mzPoly ` ( 1 ... K ) ) ) -> E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
| 21 |
|
eldiophb |
|- ( { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } e. ( Dioph ` N ) <-> ( N e. NN0 /\ E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
| 22 |
1 20 21
|
sylanbrc |
|- ( ( N e. NN0 /\ K e. ( ZZ>= ` N ) /\ P e. ( mzPoly ` ( 1 ... K ) ) ) -> { t | E. u e. ( NN0 ^m ( 1 ... K ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( P ` u ) = 0 ) } e. ( Dioph ` N ) ) |