Step |
Hyp |
Ref |
Expression |
1 |
|
df-dioph |
|- Dioph = ( n e. NN0 |-> ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) ) |
2 |
1
|
dmmptss |
|- dom Dioph C_ NN0 |
3 |
|
elfvdm |
|- ( D e. ( Dioph ` N ) -> N e. dom Dioph ) |
4 |
2 3
|
sselid |
|- ( D e. ( Dioph ` N ) -> N e. NN0 ) |
5 |
|
fveq2 |
|- ( n = N -> ( ZZ>= ` n ) = ( ZZ>= ` N ) ) |
6 |
|
eqidd |
|- ( n = N -> ( mzPoly ` ( 1 ... k ) ) = ( mzPoly ` ( 1 ... k ) ) ) |
7 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
8 |
7
|
reseq2d |
|- ( n = N -> ( u |` ( 1 ... n ) ) = ( u |` ( 1 ... N ) ) ) |
9 |
8
|
eqeq2d |
|- ( n = N -> ( t = ( u |` ( 1 ... n ) ) <-> t = ( u |` ( 1 ... N ) ) ) ) |
10 |
9
|
anbi1d |
|- ( n = N -> ( ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) <-> ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) ) ) |
11 |
10
|
rexbidv |
|- ( n = N -> ( E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) <-> E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) ) ) |
12 |
11
|
abbidv |
|- ( n = N -> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
13 |
5 6 12
|
mpoeq123dv |
|- ( n = N -> ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) = ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
14 |
13
|
rneqd |
|- ( n = N -> ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) = ran ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
15 |
|
ovex |
|- ( NN0 ^m ( 1 ... N ) ) e. _V |
16 |
15
|
pwex |
|- ~P ( NN0 ^m ( 1 ... N ) ) e. _V |
17 |
|
eqid |
|- ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) = ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
18 |
17
|
rnmpo |
|- ran ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) = { d | E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) d = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } } |
19 |
|
elmapi |
|- ( u e. ( NN0 ^m ( 1 ... k ) ) -> u : ( 1 ... k ) --> NN0 ) |
20 |
|
fzss2 |
|- ( k e. ( ZZ>= ` N ) -> ( 1 ... N ) C_ ( 1 ... k ) ) |
21 |
|
fssres |
|- ( ( u : ( 1 ... k ) --> NN0 /\ ( 1 ... N ) C_ ( 1 ... k ) ) -> ( u |` ( 1 ... N ) ) : ( 1 ... N ) --> NN0 ) |
22 |
19 20 21
|
syl2anr |
|- ( ( k e. ( ZZ>= ` N ) /\ u e. ( NN0 ^m ( 1 ... k ) ) ) -> ( u |` ( 1 ... N ) ) : ( 1 ... N ) --> NN0 ) |
23 |
|
nn0ex |
|- NN0 e. _V |
24 |
|
ovex |
|- ( 1 ... N ) e. _V |
25 |
23 24
|
elmap |
|- ( ( u |` ( 1 ... N ) ) e. ( NN0 ^m ( 1 ... N ) ) <-> ( u |` ( 1 ... N ) ) : ( 1 ... N ) --> NN0 ) |
26 |
22 25
|
sylibr |
|- ( ( k e. ( ZZ>= ` N ) /\ u e. ( NN0 ^m ( 1 ... k ) ) ) -> ( u |` ( 1 ... N ) ) e. ( NN0 ^m ( 1 ... N ) ) ) |
27 |
|
eleq1 |
|- ( t = ( u |` ( 1 ... N ) ) -> ( t e. ( NN0 ^m ( 1 ... N ) ) <-> ( u |` ( 1 ... N ) ) e. ( NN0 ^m ( 1 ... N ) ) ) ) |
28 |
27
|
adantr |
|- ( ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) -> ( t e. ( NN0 ^m ( 1 ... N ) ) <-> ( u |` ( 1 ... N ) ) e. ( NN0 ^m ( 1 ... N ) ) ) ) |
29 |
26 28
|
syl5ibrcom |
|- ( ( k e. ( ZZ>= ` N ) /\ u e. ( NN0 ^m ( 1 ... k ) ) ) -> ( ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) -> t e. ( NN0 ^m ( 1 ... N ) ) ) ) |
30 |
29
|
rexlimdva |
|- ( k e. ( ZZ>= ` N ) -> ( E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) -> t e. ( NN0 ^m ( 1 ... N ) ) ) ) |
31 |
30
|
abssdv |
|- ( k e. ( ZZ>= ` N ) -> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } C_ ( NN0 ^m ( 1 ... N ) ) ) |
32 |
15
|
elpw2 |
|- ( { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } e. ~P ( NN0 ^m ( 1 ... N ) ) <-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } C_ ( NN0 ^m ( 1 ... N ) ) ) |
33 |
31 32
|
sylibr |
|- ( k e. ( ZZ>= ` N ) -> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } e. ~P ( NN0 ^m ( 1 ... N ) ) ) |
34 |
|
eleq1 |
|- ( d = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } -> ( d e. ~P ( NN0 ^m ( 1 ... N ) ) <-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } e. ~P ( NN0 ^m ( 1 ... N ) ) ) ) |
35 |
33 34
|
syl5ibrcom |
|- ( k e. ( ZZ>= ` N ) -> ( d = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } -> d e. ~P ( NN0 ^m ( 1 ... N ) ) ) ) |
36 |
35
|
rexlimdvw |
|- ( k e. ( ZZ>= ` N ) -> ( E. p e. ( mzPoly ` ( 1 ... k ) ) d = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } -> d e. ~P ( NN0 ^m ( 1 ... N ) ) ) ) |
37 |
36
|
rexlimiv |
|- ( E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) d = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } -> d e. ~P ( NN0 ^m ( 1 ... N ) ) ) |
38 |
37
|
abssi |
|- { d | E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) d = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } } C_ ~P ( NN0 ^m ( 1 ... N ) ) |
39 |
18 38
|
eqsstri |
|- ran ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) C_ ~P ( NN0 ^m ( 1 ... N ) ) |
40 |
16 39
|
ssexi |
|- ran ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) e. _V |
41 |
14 1 40
|
fvmpt |
|- ( N e. NN0 -> ( Dioph ` N ) = ran ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
42 |
41
|
eleq2d |
|- ( N e. NN0 -> ( D e. ( Dioph ` N ) <-> D e. ran ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) ) |
43 |
|
ovex |
|- ( NN0 ^m ( 1 ... k ) ) e. _V |
44 |
43
|
abrexex |
|- { t | E. u e. ( NN0 ^m ( 1 ... k ) ) t = ( u |` ( 1 ... N ) ) } e. _V |
45 |
|
simpl |
|- ( ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) -> t = ( u |` ( 1 ... N ) ) ) |
46 |
45
|
reximi |
|- ( E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) -> E. u e. ( NN0 ^m ( 1 ... k ) ) t = ( u |` ( 1 ... N ) ) ) |
47 |
46
|
ss2abi |
|- { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } C_ { t | E. u e. ( NN0 ^m ( 1 ... k ) ) t = ( u |` ( 1 ... N ) ) } |
48 |
44 47
|
ssexi |
|- { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } e. _V |
49 |
17 48
|
elrnmpo |
|- ( D e. ran ( k e. ( ZZ>= ` N ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) <-> E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) D = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) |
50 |
42 49
|
bitrdi |
|- ( N e. NN0 -> ( D e. ( Dioph ` N ) <-> E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) D = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
51 |
4 50
|
biadanii |
|- ( D e. ( Dioph ` N ) <-> ( N e. NN0 /\ E. k e. ( ZZ>= ` N ) E. p e. ( mzPoly ` ( 1 ... k ) ) D = { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |