| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdioph |
|- Dioph |
| 1 |
|
vn |
|- n |
| 2 |
|
cn0 |
|- NN0 |
| 3 |
|
vk |
|- k |
| 4 |
|
cuz |
|- ZZ>= |
| 5 |
1
|
cv |
|- n |
| 6 |
5 4
|
cfv |
|- ( ZZ>= ` n ) |
| 7 |
|
vp |
|- p |
| 8 |
|
cmzp |
|- mzPoly |
| 9 |
|
c1 |
|- 1 |
| 10 |
|
cfz |
|- ... |
| 11 |
3
|
cv |
|- k |
| 12 |
9 11 10
|
co |
|- ( 1 ... k ) |
| 13 |
12 8
|
cfv |
|- ( mzPoly ` ( 1 ... k ) ) |
| 14 |
|
vt |
|- t |
| 15 |
|
vu |
|- u |
| 16 |
|
cmap |
|- ^m |
| 17 |
2 12 16
|
co |
|- ( NN0 ^m ( 1 ... k ) ) |
| 18 |
14
|
cv |
|- t |
| 19 |
15
|
cv |
|- u |
| 20 |
9 5 10
|
co |
|- ( 1 ... n ) |
| 21 |
19 20
|
cres |
|- ( u |` ( 1 ... n ) ) |
| 22 |
18 21
|
wceq |
|- t = ( u |` ( 1 ... n ) ) |
| 23 |
7
|
cv |
|- p |
| 24 |
19 23
|
cfv |
|- ( p ` u ) |
| 25 |
|
cc0 |
|- 0 |
| 26 |
24 25
|
wceq |
|- ( p ` u ) = 0 |
| 27 |
22 26
|
wa |
|- ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) |
| 28 |
27 15 17
|
wrex |
|- E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) |
| 29 |
28 14
|
cab |
|- { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } |
| 30 |
3 7 6 13 29
|
cmpo |
|- ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) |
| 31 |
30
|
crn |
|- ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) |
| 32 |
1 2 31
|
cmpt |
|- ( n e. NN0 |-> ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) ) |
| 33 |
0 32
|
wceq |
|- Dioph = ( n e. NN0 |-> ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) ) |