Step |
Hyp |
Ref |
Expression |
0 |
|
cdioph |
|- Dioph |
1 |
|
vn |
|- n |
2 |
|
cn0 |
|- NN0 |
3 |
|
vk |
|- k |
4 |
|
cuz |
|- ZZ>= |
5 |
1
|
cv |
|- n |
6 |
5 4
|
cfv |
|- ( ZZ>= ` n ) |
7 |
|
vp |
|- p |
8 |
|
cmzp |
|- mzPoly |
9 |
|
c1 |
|- 1 |
10 |
|
cfz |
|- ... |
11 |
3
|
cv |
|- k |
12 |
9 11 10
|
co |
|- ( 1 ... k ) |
13 |
12 8
|
cfv |
|- ( mzPoly ` ( 1 ... k ) ) |
14 |
|
vt |
|- t |
15 |
|
vu |
|- u |
16 |
|
cmap |
|- ^m |
17 |
2 12 16
|
co |
|- ( NN0 ^m ( 1 ... k ) ) |
18 |
14
|
cv |
|- t |
19 |
15
|
cv |
|- u |
20 |
9 5 10
|
co |
|- ( 1 ... n ) |
21 |
19 20
|
cres |
|- ( u |` ( 1 ... n ) ) |
22 |
18 21
|
wceq |
|- t = ( u |` ( 1 ... n ) ) |
23 |
7
|
cv |
|- p |
24 |
19 23
|
cfv |
|- ( p ` u ) |
25 |
|
cc0 |
|- 0 |
26 |
24 25
|
wceq |
|- ( p ` u ) = 0 |
27 |
22 26
|
wa |
|- ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) |
28 |
27 15 17
|
wrex |
|- E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) |
29 |
28 14
|
cab |
|- { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } |
30 |
3 7 6 13 29
|
cmpo |
|- ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) |
31 |
30
|
crn |
|- ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) |
32 |
1 2 31
|
cmpt |
|- ( n e. NN0 |-> ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) ) |
33 |
0 32
|
wceq |
|- Dioph = ( n e. NN0 |-> ran ( k e. ( ZZ>= ` n ) , p e. ( mzPoly ` ( 1 ... k ) ) |-> { t | E. u e. ( NN0 ^m ( 1 ... k ) ) ( t = ( u |` ( 1 ... n ) ) /\ ( p ` u ) = 0 ) } ) ) |