Step |
Hyp |
Ref |
Expression |
0 |
|
cdioph |
⊢ Dioph |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
vk |
⊢ 𝑘 |
4 |
|
cuz |
⊢ ℤ≥ |
5 |
1
|
cv |
⊢ 𝑛 |
6 |
5 4
|
cfv |
⊢ ( ℤ≥ ‘ 𝑛 ) |
7 |
|
vp |
⊢ 𝑝 |
8 |
|
cmzp |
⊢ mzPoly |
9 |
|
c1 |
⊢ 1 |
10 |
|
cfz |
⊢ ... |
11 |
3
|
cv |
⊢ 𝑘 |
12 |
9 11 10
|
co |
⊢ ( 1 ... 𝑘 ) |
13 |
12 8
|
cfv |
⊢ ( mzPoly ‘ ( 1 ... 𝑘 ) ) |
14 |
|
vt |
⊢ 𝑡 |
15 |
|
vu |
⊢ 𝑢 |
16 |
|
cmap |
⊢ ↑m |
17 |
2 12 16
|
co |
⊢ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) |
18 |
14
|
cv |
⊢ 𝑡 |
19 |
15
|
cv |
⊢ 𝑢 |
20 |
9 5 10
|
co |
⊢ ( 1 ... 𝑛 ) |
21 |
19 20
|
cres |
⊢ ( 𝑢 ↾ ( 1 ... 𝑛 ) ) |
22 |
18 21
|
wceq |
⊢ 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) |
23 |
7
|
cv |
⊢ 𝑝 |
24 |
19 23
|
cfv |
⊢ ( 𝑝 ‘ 𝑢 ) |
25 |
|
cc0 |
⊢ 0 |
26 |
24 25
|
wceq |
⊢ ( 𝑝 ‘ 𝑢 ) = 0 |
27 |
22 26
|
wa |
⊢ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) |
28 |
27 15 17
|
wrex |
⊢ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) |
29 |
28 14
|
cab |
⊢ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } |
30 |
3 7 6 13 29
|
cmpo |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
31 |
30
|
crn |
⊢ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑛 ∈ ℕ0 ↦ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
33 |
0 32
|
wceq |
⊢ Dioph = ( 𝑛 ∈ ℕ0 ↦ ran ( 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) , 𝑝 ∈ ( mzPoly ‘ ( 1 ... 𝑘 ) ) ↦ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑘 ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑛 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |