| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldiophb |
⊢ ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } ) ) |
| 2 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑆 ∈ V ) |
| 3 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) |
| 5 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ) |
| 6 |
|
f1f |
⊢ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 → 𝑐 : ( 1 ... 𝑎 ) ⟶ 𝑆 ) |
| 7 |
5 6
|
syl |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑐 : ( 1 ... 𝑎 ) ⟶ 𝑆 ) |
| 8 |
|
mzprename |
⊢ ( ( 𝑆 ∈ V ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ∧ 𝑐 : ( 1 ... 𝑎 ) ⟶ 𝑆 ) → ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ∈ ( mzPoly ‘ 𝑆 ) ) |
| 9 |
2 4 7 8
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ∈ ( mzPoly ‘ 𝑆 ) ) |
| 10 |
|
simprr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) |
| 11 |
|
diophrw |
⊢ ( ( 𝑆 ∈ V ∧ 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } ) |
| 12 |
11
|
eqcomd |
⊢ ( ( 𝑆 ∈ V ∧ 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } ) |
| 13 |
2 5 10 12
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } ) |
| 14 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) → ( 𝑝 ‘ 𝑢 ) = ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) → ( ( 𝑝 ‘ 𝑢 ) = 0 ↔ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) → ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) ) ) |
| 17 |
16
|
rexbidv |
⊢ ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) → ( ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) ) ) |
| 18 |
17
|
abbidv |
⊢ ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } ) |
| 19 |
18
|
rspceeqv |
⊢ ( ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ∈ ( mzPoly ‘ 𝑆 ) ∧ { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ 𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
| 20 |
9 13 19
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
| 21 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → 𝑁 ∈ ℕ0 ) |
| 22 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ¬ 𝑆 ∈ Fin ) |
| 23 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ( 1 ... 𝑁 ) ⊆ 𝑆 ) |
| 24 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 25 |
|
eldioph2lem2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 1 ... 𝑁 ) ⊆ 𝑆 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ∃ 𝑐 ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) |
| 26 |
21 22 23 24 25
|
syl22anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ∃ 𝑐 ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) |
| 27 |
|
rexv |
⊢ ( ∃ 𝑐 ∈ V ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑐 ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) |
| 28 |
26 27
|
sylibr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ∃ 𝑐 ∈ V ( 𝑐 : ( 1 ... 𝑎 ) –1-1→ 𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) |
| 29 |
20 28
|
r19.29a |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
| 30 |
|
eqeq1 |
⊢ ( 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } → ( 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ↔ { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 31 |
30
|
rexbidv |
⊢ ( 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } → ( ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ↔ ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 32 |
29 31
|
syl5ibrcom |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ( 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 33 |
32
|
rexlimdvva |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( ∃ 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 34 |
33
|
adantld |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑎 ∈ ( ℤ≥ ‘ 𝑁 ) ∃ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏 ‘ 𝑑 ) = 0 ) } ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 35 |
1 34
|
biimtrid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 36 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) ∧ 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) → 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) |
| 37 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → 𝑁 ∈ ℕ0 ) |
| 38 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → 𝑆 ∈ V ) |
| 39 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → ( 1 ... 𝑁 ) ⊆ 𝑆 ) |
| 40 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) |
| 41 |
|
eldioph2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑆 ∈ V ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
| 42 |
37 38 39 40 41
|
syl121anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) ∧ 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
| 44 |
36 43
|
eqeltrd |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) ∧ 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) → 𝐴 ∈ ( Dioph ‘ 𝑁 ) ) |
| 45 |
44
|
rexlimdva2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } → 𝐴 ∈ ( Dioph ‘ 𝑁 ) ) ) |
| 46 |
35 45
|
impbid |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |