Metamath Proof Explorer


Theorem eldioph2b

Description: While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set ( S \ ( 1 ... N ) ) . For instance, in diophin we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion eldioph2b ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )

Proof

Step Hyp Ref Expression
1 eldiophb ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑎 ∈ ( ℤ𝑁 ) ∃ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } ) )
2 simp-5r ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑆 ∈ V )
3 simprr ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) )
4 3 ad2antrr ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) )
5 simprl ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 )
6 f1f ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆𝑐 : ( 1 ... 𝑎 ) ⟶ 𝑆 )
7 5 6 syl ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → 𝑐 : ( 1 ... 𝑎 ) ⟶ 𝑆 )
8 mzprename ( ( 𝑆 ∈ V ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ∧ 𝑐 : ( 1 ... 𝑎 ) ⟶ 𝑆 ) → ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ∈ ( mzPoly ‘ 𝑆 ) )
9 2 4 7 8 syl3anc ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ∈ ( mzPoly ‘ 𝑆 ) )
10 simprr ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) )
11 diophrw ( ( 𝑆 ∈ V ∧ 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } )
12 11 eqcomd ( ( 𝑆 ∈ V ∧ 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } )
13 2 5 10 12 syl3anc ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } )
14 fveq1 ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) → ( 𝑝𝑢 ) = ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) )
15 14 eqeq1d ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) → ( ( 𝑝𝑢 ) = 0 ↔ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) )
16 15 anbi2d ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) → ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) ↔ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) ) )
17 16 rexbidv ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) → ( ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) ↔ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) ) )
18 17 abbidv ( 𝑝 = ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } )
19 18 rspceeqv ( ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ∈ ( mzPoly ‘ 𝑆 ) ∧ { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑒 ∈ ( ℤ ↑m 𝑆 ) ↦ ( 𝑏 ‘ ( 𝑒𝑐 ) ) ) ‘ 𝑢 ) = 0 ) } ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } )
20 9 13 19 syl2anc ( ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) ∧ 𝑐 ∈ V ) ∧ ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } )
21 simplll ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → 𝑁 ∈ ℕ0 )
22 simplrl ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ¬ 𝑆 ∈ Fin )
23 simplrr ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ( 1 ... 𝑁 ) ⊆ 𝑆 )
24 simprl ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → 𝑎 ∈ ( ℤ𝑁 ) )
25 eldioph2lem2 ( ( ( 𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin ) ∧ ( ( 1 ... 𝑁 ) ⊆ 𝑆𝑎 ∈ ( ℤ𝑁 ) ) ) → ∃ 𝑐 ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) )
26 21 22 23 24 25 syl22anc ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ∃ 𝑐 ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) )
27 rexv ( ∃ 𝑐 ∈ V ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) ↔ ∃ 𝑐 ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) )
28 26 27 sylibr ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ∃ 𝑐 ∈ V ( 𝑐 : ( 1 ... 𝑎 ) –1-1𝑆 ∧ ( 𝑐 ↾ ( 1 ... 𝑁 ) ) = ( I ↾ ( 1 ... 𝑁 ) ) ) )
29 20 28 r19.29a ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } )
30 eqeq1 ( 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } → ( 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ↔ { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )
31 30 rexbidv ( 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } → ( ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ↔ ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )
32 29 31 syl5ibrcom ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ ( 𝑎 ∈ ( ℤ𝑁 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) ) ) → ( 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )
33 32 rexlimdvva ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( ∃ 𝑎 ∈ ( ℤ𝑁 ) ∃ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )
34 33 adantld ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑎 ∈ ( ℤ𝑁 ) ∃ 𝑏 ∈ ( mzPoly ‘ ( 1 ... 𝑎 ) ) 𝐴 = { 𝑡 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑎 ) ) ( 𝑡 = ( 𝑑 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑏𝑑 ) = 0 ) } ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )
35 1 34 syl5bi ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) → ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )
36 simpr ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) ∧ 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) → 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } )
37 simplll ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → 𝑁 ∈ ℕ0 )
38 simpllr ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → 𝑆 ∈ V )
39 simplrr ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → ( 1 ... 𝑁 ) ⊆ 𝑆 )
40 simpr ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → 𝑝 ∈ ( mzPoly ‘ 𝑆 ) )
41 eldioph2 ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑆 ∈ V ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) )
42 37 38 39 40 41 syl121anc ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) )
43 42 adantr ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) ∧ 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) → { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) )
44 36 43 eqeltrd ( ( ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) ∧ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) ) ∧ 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) → 𝐴 ∈ ( Dioph ‘ 𝑁 ) )
45 44 rexlimdva2 ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } → 𝐴 ∈ ( Dioph ‘ 𝑁 ) ) )
46 35 45 impbid ( ( ( 𝑁 ∈ ℕ0𝑆 ∈ V ) ∧ ( ¬ 𝑆 ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ 𝑆 ) 𝐴 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0m 𝑆 ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝𝑢 ) = 0 ) } ) )