Metamath Proof Explorer


Theorem eldiophelnn0

Description: Remove antecedent on B from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion eldiophelnn0 ( 𝐴 ∈ ( Dioph ‘ 𝐵 ) → 𝐵 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 eldiophb ( 𝐴 ∈ ( Dioph ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℕ0 ∧ ∃ 𝑏 ∈ ( ℤ𝐵 ) ∃ 𝑎 ∈ ( mzPoly ‘ ( 1 ... 𝑏 ) ) 𝐴 = { 𝑐 ∣ ∃ 𝑑 ∈ ( ℕ0m ( 1 ... 𝑏 ) ) ( 𝑐 = ( 𝑑 ↾ ( 1 ... 𝐵 ) ) ∧ ( 𝑎𝑑 ) = 0 ) } ) )
2 1 simplbi ( 𝐴 ∈ ( Dioph ‘ 𝐵 ) → 𝐵 ∈ ℕ0 )