Metamath Proof Explorer


Definition df-dioph

Description: A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes ZZ (via mzPoly ) and NN0 (to define the zero sets); the former could be avoided by considering coincidence sets of NN0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq that implicitly restricting variables to NN0 adds no expressive power over allowing them to range over ZZ . While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b . (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion df-dioph Dioph=n0rankn,pmzPoly1kt|u01kt=u1npu=0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdioph classDioph
1 vn setvarn
2 cn0 class0
3 vk setvark
4 cuz class
5 1 cv setvarn
6 5 4 cfv classn
7 vp setvarp
8 cmzp classmzPoly
9 c1 class1
10 cfz class
11 3 cv setvark
12 9 11 10 co class1k
13 12 8 cfv classmzPoly1k
14 vt setvart
15 vu setvaru
16 cmap class𝑚
17 2 12 16 co class01k
18 14 cv setvart
19 15 cv setvaru
20 9 5 10 co class1n
21 19 20 cres classu1n
22 18 21 wceq wfft=u1n
23 7 cv setvarp
24 19 23 cfv classpu
25 cc0 class0
26 24 25 wceq wffpu=0
27 22 26 wa wfft=u1npu=0
28 27 15 17 wrex wffu01kt=u1npu=0
29 28 14 cab classt|u01kt=u1npu=0
30 3 7 6 13 29 cmpo classkn,pmzPoly1kt|u01kt=u1npu=0
31 30 crn classrankn,pmzPoly1kt|u01kt=u1npu=0
32 1 2 31 cmpt classn0rankn,pmzPoly1kt|u01kt=u1npu=0
33 0 32 wceq wffDioph=n0rankn,pmzPoly1kt|u01kt=u1npu=0