| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldiophelnn0 |
|- ( A e. ( Dioph ` N ) -> N e. NN0 ) |
| 2 |
|
nnex |
|- NN e. _V |
| 3 |
|
1z |
|- 1 e. ZZ |
| 4 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 5 |
4
|
uzinf |
|- ( 1 e. ZZ -> -. NN e. Fin ) |
| 6 |
3 5
|
ax-mp |
|- -. NN e. Fin |
| 7 |
|
elfznn |
|- ( p e. ( 1 ... N ) -> p e. NN ) |
| 8 |
7
|
ssriv |
|- ( 1 ... N ) C_ NN |
| 9 |
|
eldioph2b |
|- ( ( ( N e. NN0 /\ NN e. _V ) /\ ( -. NN e. Fin /\ ( 1 ... N ) C_ NN ) ) -> ( A e. ( Dioph ` N ) <-> E. p e. ( mzPoly ` NN ) A = { t | E. u e. ( NN0 ^m NN ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
| 10 |
6 8 9
|
mpanr12 |
|- ( ( N e. NN0 /\ NN e. _V ) -> ( A e. ( Dioph ` N ) <-> E. p e. ( mzPoly ` NN ) A = { t | E. u e. ( NN0 ^m NN ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
| 11 |
2 10
|
mpan2 |
|- ( N e. NN0 -> ( A e. ( Dioph ` N ) <-> E. p e. ( mzPoly ` NN ) A = { t | E. u e. ( NN0 ^m NN ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |
| 12 |
1 11
|
biadanii |
|- ( A e. ( Dioph ` N ) <-> ( N e. NN0 /\ E. p e. ( mzPoly ` NN ) A = { t | E. u e. ( NN0 ^m NN ) ( t = ( u |` ( 1 ... N ) ) /\ ( p ` u ) = 0 ) } ) ) |