Metamath Proof Explorer


Theorem eldioph3b

Description: Define Diophantine sets in terms of polynomials with variables indexed by NN . This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion eldioph3b A Dioph N N 0 p mzPoly A = t | u 0 t = u 1 N p u = 0

Proof

Step Hyp Ref Expression
1 eldiophelnn0 A Dioph N N 0
2 nnex V
3 1z 1
4 nnuz = 1
5 4 uzinf 1 ¬ Fin
6 3 5 ax-mp ¬ Fin
7 elfznn p 1 N p
8 7 ssriv 1 N
9 eldioph2b N 0 V ¬ Fin 1 N A Dioph N p mzPoly A = t | u 0 t = u 1 N p u = 0
10 6 8 9 mpanr12 N 0 V A Dioph N p mzPoly A = t | u 0 t = u 1 N p u = 0
11 2 10 mpan2 N 0 A Dioph N p mzPoly A = t | u 0 t = u 1 N p u = 0
12 1 11 biadanii A Dioph N N 0 p mzPoly A = t | u 0 t = u 1 N p u = 0