Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑡 𝑁 ∈ ℕ0 |
2 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) |
3 |
2
|
nfel1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) |
4 |
1 3
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) |
5 |
|
zex |
⊢ ℤ ∈ V |
6 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
7 |
|
mapss |
⊢ ( ( ℤ ∈ V ∧ ℕ0 ⊆ ℤ ) → ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℤ ↑m ( 1 ... 𝑁 ) ) ) |
8 |
5 6 7
|
mp2an |
⊢ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ⊆ ( ℤ ↑m ( 1 ... 𝑁 ) ) |
9 |
8
|
sseli |
⊢ ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ) |
11 |
|
mzpf |
⊢ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) : ( ℤ ↑m ( 1 ... 𝑁 ) ) ⟶ ℤ ) |
12 |
|
mptfcl |
⊢ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) : ( ℤ ↑m ( 1 ... 𝑁 ) ) ⟶ ℤ → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) → 𝐴 ∈ ℤ ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) : ( ℤ ↑m ( 1 ... 𝑁 ) ) ⟶ ℤ ∧ 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ) → 𝐴 ∈ ℤ ) |
14 |
11 9 13
|
syl2an |
⊢ ( ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝐴 ∈ ℤ ) |
15 |
14
|
adantll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝐴 ∈ ℤ ) |
16 |
|
eqid |
⊢ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) = ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) |
17 |
16
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 𝐴 ) |
18 |
10 15 17
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 𝐴 ) |
19 |
18
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → 𝐴 = ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) ) |
20 |
19
|
eqeq1d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( 𝐴 = 0 ↔ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 ) ) |
21 |
20
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 𝐴 = 0 ↔ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 ) ) ) |
22 |
4 21
|
ralrimi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝐴 = 0 ↔ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 ) ) |
23 |
|
rabbi |
⊢ ( ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝐴 = 0 ↔ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 ) ↔ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 = 0 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 } ) |
24 |
22 23
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 = 0 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 } ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑎 ( ℕ0 ↑m ( 1 ... 𝑁 ) ) |
27 |
|
nfv |
⊢ Ⅎ 𝑎 ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 |
28 |
|
nffvmpt1 |
⊢ Ⅎ 𝑡 ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) |
29 |
28
|
nfeq1 |
⊢ Ⅎ 𝑡 ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 |
30 |
|
fveqeq2 |
⊢ ( 𝑡 = 𝑎 → ( ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 ↔ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 ) ) |
31 |
25 26 27 29 30
|
cbvrabw |
⊢ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑡 ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 } |
32 |
24 31
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 } ) |
33 |
|
df-rab |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 } = { 𝑎 ∣ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 ) } |
34 |
32 33
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 = 0 } = { 𝑎 ∣ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 ) } ) |
35 |
|
elmapi |
⊢ ( 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → 𝑏 : ( 1 ... 𝑁 ) ⟶ ℕ0 ) |
36 |
|
ffn |
⊢ ( 𝑏 : ( 1 ... 𝑁 ) ⟶ ℕ0 → 𝑏 Fn ( 1 ... 𝑁 ) ) |
37 |
|
fnresdm |
⊢ ( 𝑏 Fn ( 1 ... 𝑁 ) → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) = 𝑏 ) |
38 |
35 36 37
|
3syl |
⊢ ( 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 𝑏 ↾ ( 1 ... 𝑁 ) ) = 𝑏 ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑎 = 𝑏 ) ) |
40 |
|
equcom |
⊢ ( 𝑎 = 𝑏 ↔ 𝑏 = 𝑎 ) |
41 |
39 40
|
bitrdi |
⊢ ( 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑏 = 𝑎 ) ) |
42 |
41
|
anbi1d |
⊢ ( 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) ↔ ( 𝑏 = 𝑎 ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) ) ) |
43 |
42
|
rexbiia |
⊢ ( ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑏 = 𝑎 ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) ) |
44 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝑎 → ( ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ↔ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 ) ) |
45 |
44
|
ceqsrexbv |
⊢ ( ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑏 = 𝑎 ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) ↔ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 ) ) |
46 |
43 45
|
bitr2i |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 ) ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) ) |
47 |
46
|
abbii |
⊢ { 𝑎 ∣ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑎 ) = 0 ) } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) } |
48 |
34 47
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 = 0 } = { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) } ) |
49 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
50 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
51 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
52 |
50 51
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
54 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) |
55 |
|
eldioph |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
56 |
49 53 54 55
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑎 ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝑎 = ( 𝑏 ↾ ( 1 ... 𝑁 ) ) ∧ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ 𝑏 ) = 0 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
57 |
48 56
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 = 0 } ∈ ( Dioph ‘ 𝑁 ) ) |