Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( a = t -> ( a = ( b |` ( 1 ... N ) ) <-> t = ( b |` ( 1 ... N ) ) ) ) |
2 |
1
|
rexbidv |
|- ( a = t -> ( E. b e. S a = ( b |` ( 1 ... N ) ) <-> E. b e. S t = ( b |` ( 1 ... N ) ) ) ) |
3 |
|
reseq1 |
|- ( b = u -> ( b |` ( 1 ... N ) ) = ( u |` ( 1 ... N ) ) ) |
4 |
3
|
eqeq2d |
|- ( b = u -> ( t = ( b |` ( 1 ... N ) ) <-> t = ( u |` ( 1 ... N ) ) ) ) |
5 |
4
|
cbvrexvw |
|- ( E. b e. S t = ( b |` ( 1 ... N ) ) <-> E. u e. S t = ( u |` ( 1 ... N ) ) ) |
6 |
2 5
|
bitrdi |
|- ( a = t -> ( E. b e. S a = ( b |` ( 1 ... N ) ) <-> E. u e. S t = ( u |` ( 1 ... N ) ) ) ) |
7 |
6
|
cbvabv |
|- { a | E. b e. S a = ( b |` ( 1 ... N ) ) } = { t | E. u e. S t = ( u |` ( 1 ... N ) ) } |
8 |
|
rexeq |
|- ( S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } -> ( E. b e. S a = ( b |` ( 1 ... N ) ) <-> E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) ) ) |
9 |
8
|
abbidv |
|- ( S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } -> { a | E. b e. S a = ( b |` ( 1 ... N ) ) } = { a | E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) } ) |
10 |
9
|
adantl |
|- ( ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) /\ S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } ) -> { a | E. b e. S a = ( b |` ( 1 ... N ) ) } = { a | E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) } ) |
11 |
|
eqeq1 |
|- ( d = b -> ( d = ( e |` ( 1 ... M ) ) <-> b = ( e |` ( 1 ... M ) ) ) ) |
12 |
11
|
anbi1d |
|- ( d = b -> ( ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) <-> ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) ) ) |
13 |
12
|
rexbidv |
|- ( d = b -> ( E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) <-> E. e e. ( NN0 ^m NN ) ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) ) ) |
14 |
13
|
rexab |
|- ( E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) <-> E. b ( E. e e. ( NN0 ^m NN ) ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) ) |
15 |
|
r19.41v |
|- ( E. e e. ( NN0 ^m NN ) ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> ( E. e e. ( NN0 ^m NN ) ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) ) |
16 |
15
|
exbii |
|- ( E. b E. e e. ( NN0 ^m NN ) ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> E. b ( E. e e. ( NN0 ^m NN ) ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) ) |
17 |
|
rexcom4 |
|- ( E. e e. ( NN0 ^m NN ) E. b ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> E. b E. e e. ( NN0 ^m NN ) ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) ) |
18 |
|
anass |
|- ( ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> ( b = ( e |` ( 1 ... M ) ) /\ ( ( c ` e ) = 0 /\ a = ( b |` ( 1 ... N ) ) ) ) ) |
19 |
18
|
exbii |
|- ( E. b ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> E. b ( b = ( e |` ( 1 ... M ) ) /\ ( ( c ` e ) = 0 /\ a = ( b |` ( 1 ... N ) ) ) ) ) |
20 |
|
vex |
|- e e. _V |
21 |
20
|
resex |
|- ( e |` ( 1 ... M ) ) e. _V |
22 |
|
reseq1 |
|- ( b = ( e |` ( 1 ... M ) ) -> ( b |` ( 1 ... N ) ) = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) |
23 |
22
|
eqeq2d |
|- ( b = ( e |` ( 1 ... M ) ) -> ( a = ( b |` ( 1 ... N ) ) <-> a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) ) |
24 |
23
|
anbi2d |
|- ( b = ( e |` ( 1 ... M ) ) -> ( ( ( c ` e ) = 0 /\ a = ( b |` ( 1 ... N ) ) ) <-> ( ( c ` e ) = 0 /\ a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) ) ) |
25 |
21 24
|
ceqsexv |
|- ( E. b ( b = ( e |` ( 1 ... M ) ) /\ ( ( c ` e ) = 0 /\ a = ( b |` ( 1 ... N ) ) ) ) <-> ( ( c ` e ) = 0 /\ a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) ) |
26 |
19 25
|
bitri |
|- ( E. b ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> ( ( c ` e ) = 0 /\ a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) ) |
27 |
|
ancom |
|- ( ( ( c ` e ) = 0 /\ a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) <-> ( a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) |
28 |
|
simpl2 |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> M e. ( ZZ>= ` N ) ) |
29 |
|
fzss2 |
|- ( M e. ( ZZ>= ` N ) -> ( 1 ... N ) C_ ( 1 ... M ) ) |
30 |
|
resabs1 |
|- ( ( 1 ... N ) C_ ( 1 ... M ) -> ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) = ( e |` ( 1 ... N ) ) ) |
31 |
28 29 30
|
3syl |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) = ( e |` ( 1 ... N ) ) ) |
32 |
31
|
eqeq2d |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) <-> a = ( e |` ( 1 ... N ) ) ) ) |
33 |
32
|
anbi1d |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( ( a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) <-> ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) ) |
34 |
27 33
|
syl5bb |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( ( ( c ` e ) = 0 /\ a = ( ( e |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) <-> ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) ) |
35 |
26 34
|
syl5bb |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( E. b ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) ) |
36 |
35
|
rexbidv |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( E. e e. ( NN0 ^m NN ) E. b ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> E. e e. ( NN0 ^m NN ) ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) ) |
37 |
17 36
|
bitr3id |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( E. b E. e e. ( NN0 ^m NN ) ( ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> E. e e. ( NN0 ^m NN ) ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) ) |
38 |
16 37
|
bitr3id |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( E. b ( E. e e. ( NN0 ^m NN ) ( b = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) /\ a = ( b |` ( 1 ... N ) ) ) <-> E. e e. ( NN0 ^m NN ) ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) ) |
39 |
14 38
|
syl5bb |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> ( E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) <-> E. e e. ( NN0 ^m NN ) ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) ) ) |
40 |
39
|
abbidv |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> { a | E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) } = { a | E. e e. ( NN0 ^m NN ) ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) } ) |
41 |
|
eldioph3 |
|- ( ( N e. NN0 /\ c e. ( mzPoly ` NN ) ) -> { a | E. e e. ( NN0 ^m NN ) ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) } e. ( Dioph ` N ) ) |
42 |
41
|
3ad2antl1 |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> { a | E. e e. ( NN0 ^m NN ) ( a = ( e |` ( 1 ... N ) ) /\ ( c ` e ) = 0 ) } e. ( Dioph ` N ) ) |
43 |
40 42
|
eqeltrd |
|- ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) -> { a | E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) } e. ( Dioph ` N ) ) |
44 |
43
|
adantr |
|- ( ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) /\ S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } ) -> { a | E. b e. { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } a = ( b |` ( 1 ... N ) ) } e. ( Dioph ` N ) ) |
45 |
10 44
|
eqeltrd |
|- ( ( ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) /\ c e. ( mzPoly ` NN ) ) /\ S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } ) -> { a | E. b e. S a = ( b |` ( 1 ... N ) ) } e. ( Dioph ` N ) ) |
46 |
|
eldioph3b |
|- ( S e. ( Dioph ` M ) <-> ( M e. NN0 /\ E. c e. ( mzPoly ` NN ) S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } ) ) |
47 |
46
|
simprbi |
|- ( S e. ( Dioph ` M ) -> E. c e. ( mzPoly ` NN ) S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } ) |
48 |
47
|
3ad2ant3 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) -> E. c e. ( mzPoly ` NN ) S = { d | E. e e. ( NN0 ^m NN ) ( d = ( e |` ( 1 ... M ) ) /\ ( c ` e ) = 0 ) } ) |
49 |
45 48
|
r19.29a |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) -> { a | E. b e. S a = ( b |` ( 1 ... N ) ) } e. ( Dioph ` N ) ) |
50 |
7 49
|
eqeltrrid |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ S e. ( Dioph ` M ) ) -> { t | E. u e. S t = ( u |` ( 1 ... N ) ) } e. ( Dioph ` N ) ) |