| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexfrabdioph.1 | ⊢ 𝑀  =  ( 𝑁  +  1 ) | 
						
							| 2 |  | nfcv | ⊢ Ⅎ 𝑢 ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑎 ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑎 ∃ 𝑣  ∈  ℕ0 𝜑 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑢 ℕ0 | 
						
							| 6 |  | nfsbc1v | ⊢ Ⅎ 𝑢 [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑 | 
						
							| 7 | 5 6 | nfrexw | ⊢ Ⅎ 𝑢 ∃ 𝑏  ∈  ℕ0 [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑏 𝜑 | 
						
							| 9 |  | nfsbc1v | ⊢ Ⅎ 𝑣 [ 𝑏  /  𝑣 ] 𝜑 | 
						
							| 10 |  | sbceq1a | ⊢ ( 𝑣  =  𝑏  →  ( 𝜑  ↔  [ 𝑏  /  𝑣 ] 𝜑 ) ) | 
						
							| 11 | 8 9 10 | cbvrexw | ⊢ ( ∃ 𝑣  ∈  ℕ0 𝜑  ↔  ∃ 𝑏  ∈  ℕ0 [ 𝑏  /  𝑣 ] 𝜑 ) | 
						
							| 12 |  | sbceq1a | ⊢ ( 𝑢  =  𝑎  →  ( [ 𝑏  /  𝑣 ] 𝜑  ↔  [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑 ) ) | 
						
							| 13 | 12 | rexbidv | ⊢ ( 𝑢  =  𝑎  →  ( ∃ 𝑏  ∈  ℕ0 [ 𝑏  /  𝑣 ] 𝜑  ↔  ∃ 𝑏  ∈  ℕ0 [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑 ) ) | 
						
							| 14 | 11 13 | bitrid | ⊢ ( 𝑢  =  𝑎  →  ( ∃ 𝑣  ∈  ℕ0 𝜑  ↔  ∃ 𝑏  ∈  ℕ0 [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑 ) ) | 
						
							| 15 | 2 3 4 7 14 | cbvrabw | ⊢ { 𝑢  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑣  ∈  ℕ0 𝜑 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑 } | 
						
							| 16 |  | dfsbcq | ⊢ ( 𝑏  =  ( 𝑡 ‘ 𝑀 )  →  ( [ 𝑏  /  𝑣 ] 𝜑  ↔  [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) ) | 
						
							| 17 | 16 | sbcbidv | ⊢ ( 𝑏  =  ( 𝑡 ‘ 𝑀 )  →  ( [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑  ↔  [ 𝑎  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) ) | 
						
							| 18 |  | dfsbcq | ⊢ ( 𝑎  =  ( 𝑡  ↾  ( 1 ... 𝑁 ) )  →  ( [ 𝑎  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) ) | 
						
							| 19 | 1 17 18 | rexrabdioph | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝑀 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ℕ0 [ 𝑎  /  𝑢 ] [ 𝑏  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 20 | 15 19 | eqeltrid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝑀 ) )  →  { 𝑢  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑣  ∈  ℕ0 𝜑 }  ∈  ( Dioph ‘ 𝑁 ) ) |