Step |
Hyp |
Ref |
Expression |
1 |
|
rexfrabdioph.1 |
⊢ 𝑀 = ( 𝑁 + 1 ) |
2 |
|
rexfrabdioph.2 |
⊢ 𝐿 = ( 𝑀 + 1 ) |
3 |
|
2sbcrex |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 𝜑 ↔ ∃ 𝑤 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) |
4 |
3
|
rabbii |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 𝜑 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑤 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } |
5 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
6 |
1 5
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ℕ0 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → 𝑀 ∈ ℕ0 ) |
8 |
|
sbcrot3 |
⊢ ( [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ↔ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
9 |
8
|
sbcbii |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
10 |
|
reseq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝑀 ) ) → ( 𝑎 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) ) |
11 |
10
|
sbccomieg |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
12 |
|
fzssp1 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
13 |
1
|
oveq2i |
⊢ ( 1 ... 𝑀 ) = ( 1 ... ( 𝑁 + 1 ) ) |
14 |
12 13
|
sseqtrri |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) |
15 |
|
resabs1 |
⊢ ( ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) → ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) |
16 |
|
dfsbcq |
⊢ ( ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
17 |
14 15 16
|
mp2b |
⊢ ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
18 |
|
vex |
⊢ 𝑡 ∈ V |
19 |
18
|
resex |
⊢ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ∈ V |
20 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝑀 ) ) → ( 𝑎 ‘ 𝑀 ) = ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) ) |
21 |
20
|
sbcco3gw |
⊢ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ∈ V → ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
22 |
19 21
|
ax-mp |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
23 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
24 |
1 23
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ℕ ) |
25 |
|
elfz1end |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) |
26 |
24 25
|
sylib |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
27 |
|
fvres |
⊢ ( 𝑀 ∈ ( 1 ... 𝑀 ) → ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) = ( 𝑡 ‘ 𝑀 ) ) |
28 |
|
dfsbcq |
⊢ ( ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) = ( 𝑡 ‘ 𝑀 ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
29 |
26 27 28
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
30 |
22 29
|
syl5bb |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
31 |
30
|
sbcbidv |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
32 |
17 31
|
syl5bb |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝑀 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
33 |
11 32
|
syl5bb |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) ) |
34 |
9 33
|
bitr2id |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 ) ) |
35 |
34
|
rabbidv |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ) |
36 |
35
|
eleq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ↔ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) ) |
37 |
36
|
biimpa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) |
38 |
2
|
rexfrabdioph |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑀 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑤 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) |
39 |
7 37 38
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑤 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) |
40 |
4 39
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) |
41 |
1
|
rexfrabdioph |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] ∃ 𝑤 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑀 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ) |
42 |
40 41
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ) |