Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sbcrex | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcrex | ⊢ ( [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ) | |
2 | 1 | sbcbii | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ [ 𝐴 / 𝑎 ] ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ) |
3 | sbcrex | ⊢ ( [ 𝐴 / 𝑎 ] ∃ 𝑐 ∈ 𝐶 [ 𝐵 / 𝑏 ] 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ) | |
4 | 2 3 | bitri | ⊢ ( [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] ∃ 𝑐 ∈ 𝐶 𝜑 ↔ ∃ 𝑐 ∈ 𝐶 [ 𝐴 / 𝑎 ] [ 𝐵 / 𝑏 ] 𝜑 ) |