Metamath Proof Explorer


Theorem 2sbcrex

Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)

Ref Expression
Assertion 2sbcrex [˙A / a]˙ [˙B / b]˙ c C φ c C [˙A / a]˙ [˙B / b]˙ φ

Proof

Step Hyp Ref Expression
1 sbcrex [˙B / b]˙ c C φ c C [˙B / b]˙ φ
2 1 sbcbii [˙A / a]˙ [˙B / b]˙ c C φ [˙A / a]˙ c C [˙B / b]˙ φ
3 sbcrex [˙A / a]˙ c C [˙B / b]˙ φ c C [˙A / a]˙ [˙B / b]˙ φ
4 2 3 bitri [˙A / a]˙ [˙B / b]˙ c C φ c C [˙A / a]˙ [˙B / b]˙ φ