Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by NM, 24-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sbcrex | |- ( [. A / a ]. [. B / b ]. E. c e. C ph <-> E. c e. C [. A / a ]. [. B / b ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcrex | |- ( [. B / b ]. E. c e. C ph <-> E. c e. C [. B / b ]. ph ) |
|
| 2 | 1 | sbcbii | |- ( [. A / a ]. [. B / b ]. E. c e. C ph <-> [. A / a ]. E. c e. C [. B / b ]. ph ) |
| 3 | sbcrex | |- ( [. A / a ]. E. c e. C [. B / b ]. ph <-> E. c e. C [. A / a ]. [. B / b ]. ph ) |
|
| 4 | 2 3 | bitri | |- ( [. A / a ]. [. B / b ]. E. c e. C ph <-> E. c e. C [. A / a ]. [. B / b ]. ph ) |