| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexfrabdioph.1 | ⊢ 𝑀  =  ( 𝑁  +  1 ) | 
						
							| 2 |  | rexfrabdioph.2 | ⊢ 𝐿  =  ( 𝑀  +  1 ) | 
						
							| 3 |  | rexfrabdioph.3 | ⊢ 𝐾  =  ( 𝐿  +  1 ) | 
						
							| 4 |  | sbc2rex | ⊢ ( [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑  ↔  ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 5 | 4 | sbcbii | ⊢ ( [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑  ↔  [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 6 |  | sbc2rex | ⊢ ( [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑  ↔  ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑  ↔  ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 8 | 7 | rabbii | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 } | 
						
							| 9 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 10 | 1 9 | eqeltrid | ⊢ ( 𝑁  ∈  ℕ0  →  𝑀  ∈  ℕ ) | 
						
							| 11 | 10 | nnnn0d | ⊢ ( 𝑁  ∈  ℕ0  →  𝑀  ∈  ℕ0 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 13 |  | sbcrot3 | ⊢ ( [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 14 | 13 | sbcbii | ⊢ ( [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 15 |  | sbcrot3 | ⊢ ( [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑  ↔  [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 17 | 16 | sbcbii | ⊢ ( [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 ) | 
						
							| 18 |  | reseq1 | ⊢ ( 𝑎  =  ( 𝑡  ↾  ( 1 ... 𝑀 ) )  →  ( 𝑎  ↾  ( 1 ... 𝑁 ) )  =  ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 19 | 18 | sbccomieg | ⊢ ( [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) | 
						
							| 20 |  | fzssp1 | ⊢ ( 1 ... 𝑁 )  ⊆  ( 1 ... ( 𝑁  +  1 ) ) | 
						
							| 21 | 1 | oveq2i | ⊢ ( 1 ... 𝑀 )  =  ( 1 ... ( 𝑁  +  1 ) ) | 
						
							| 22 | 20 21 | sseqtrri | ⊢ ( 1 ... 𝑁 )  ⊆  ( 1 ... 𝑀 ) | 
						
							| 23 |  | resabs1 | ⊢ ( ( 1 ... 𝑁 )  ⊆  ( 1 ... 𝑀 )  →  ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ↾  ( 1 ... 𝑁 ) )  =  ( 𝑡  ↾  ( 1 ... 𝑁 ) ) ) | 
						
							| 24 |  | dfsbcq | ⊢ ( ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ↾  ( 1 ... 𝑁 ) )  =  ( 𝑡  ↾  ( 1 ... 𝑁 ) )  →  ( [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 25 | 22 23 24 | mp2b | ⊢ ( [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) | 
						
							| 26 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 27 | 26 | resex | ⊢ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ∈  V | 
						
							| 28 |  | fveq1 | ⊢ ( 𝑎  =  ( 𝑡  ↾  ( 1 ... 𝑀 ) )  →  ( 𝑎 ‘ 𝑀 )  =  ( ( 𝑡  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑀 ) ) | 
						
							| 29 | 28 | sbcco3gw | ⊢ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ∈  V  →  ( [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 30 | 27 29 | ax-mp | ⊢ ( [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) | 
						
							| 31 |  | elfz1end | ⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 32 | 10 31 | sylib | ⊢ ( 𝑁  ∈  ℕ0  →  𝑀  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 33 |  | fvres | ⊢ ( 𝑀  ∈  ( 1 ... 𝑀 )  →  ( ( 𝑡  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑀 )  =  ( 𝑡 ‘ 𝑀 ) ) | 
						
							| 34 |  | dfsbcq | ⊢ ( ( ( 𝑡  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑀 )  =  ( 𝑡 ‘ 𝑀 )  →  ( [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 35 | 32 33 34 | 3syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 36 | 30 35 | bitrid | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 37 | 36 | sbcbidv | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 38 | 25 37 | bitrid | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ ( ( 𝑡  ↾  ( 1 ... 𝑀 ) )  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 39 | 19 38 | bitrid | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 40 | 17 39 | bitr3id | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑  ↔  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 41 | 40 | rabbidv | ⊢ ( 𝑁  ∈  ℕ0  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 } ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 )  ↔  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) ) ) | 
						
							| 43 | 42 | biimpar | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) ) | 
						
							| 44 | 2 3 | 2rexfrabdioph | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑀 ) )  /  𝑎 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝑀 ) ) | 
						
							| 45 | 12 43 44 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] 𝜑 }  ∈  ( Dioph ‘ 𝑀 ) ) | 
						
							| 46 | 8 45 | eqeltrid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑 }  ∈  ( Dioph ‘ 𝑀 ) ) | 
						
							| 47 | 1 | rexfrabdioph | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  [ ( 𝑎  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑎 ‘ 𝑀 )  /  𝑣 ] ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑 }  ∈  ( Dioph ‘ 𝑀 ) )  →  { 𝑢  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑣  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 48 | 46 47 | syldan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝐾 ) )  ∣  [ ( 𝑡  ↾  ( 1 ... 𝑁 ) )  /  𝑢 ] [ ( 𝑡 ‘ 𝑀 )  /  𝑣 ] [ ( 𝑡 ‘ 𝐿 )  /  𝑤 ] [ ( 𝑡 ‘ 𝐾 )  /  𝑥 ] 𝜑 }  ∈  ( Dioph ‘ 𝐾 ) )  →  { 𝑢  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑣  ∈  ℕ0 ∃ 𝑤  ∈  ℕ0 ∃ 𝑥  ∈  ℕ0 𝜑 }  ∈  ( Dioph ‘ 𝑁 ) ) |