Metamath Proof Explorer


Theorem 4rexfrabdioph

Description: Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses rexfrabdioph.1 𝑀 = ( 𝑁 + 1 )
rexfrabdioph.2 𝐿 = ( 𝑀 + 1 )
rexfrabdioph.3 𝐾 = ( 𝐿 + 1 )
rexfrabdioph.4 𝐽 = ( 𝐾 + 1 )
Assertion 4rexfrabdioph ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑢 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 rexfrabdioph.1 𝑀 = ( 𝑁 + 1 )
2 rexfrabdioph.2 𝐿 = ( 𝑀 + 1 )
3 rexfrabdioph.3 𝐾 = ( 𝐿 + 1 )
4 rexfrabdioph.4 𝐽 = ( 𝐾 + 1 )
5 2sbcrex ( [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0 [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑦 ∈ ℕ0 𝜑 )
6 2sbcrex ( [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑦 ∈ ℕ0 [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 )
7 6 rexbii ( ∃ 𝑥 ∈ ℕ0 [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 )
8 5 7 bitri ( [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 )
9 8 sbcbii ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑[ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 )
10 sbc2rex ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 ↔ ∃ 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 )
11 9 10 bitri ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 )
12 11 rabbii { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 } = { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐿 ) ) ∣ ∃ 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 }
13 nn0p1nn ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ )
14 1 13 eqeltrid ( 𝑁 ∈ ℕ0𝑀 ∈ ℕ )
15 14 peano2nnd ( 𝑁 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ )
16 2 15 eqeltrid ( 𝑁 ∈ ℕ0𝐿 ∈ ℕ )
17 16 nnnn0d ( 𝑁 ∈ ℕ0𝐿 ∈ ℕ0 )
18 17 adantr ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → 𝐿 ∈ ℕ0 )
19 sbcrot3 ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 )
20 sbcrot3 ( [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
21 20 sbcbii ( [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
22 sbcrot3 ( [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
23 21 22 bitri ( [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
24 23 sbcbii ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
25 19 24 bitr3i ( [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
26 25 sbcbii ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
27 reseq1 ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝐿 ) ) → ( 𝑎 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) )
28 27 sbccomieg ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
29 fzssp1 ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) )
30 1 oveq2i ( 1 ... 𝑀 ) = ( 1 ... ( 𝑁 + 1 ) )
31 29 30 sseqtrri ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 )
32 fzssp1 ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) )
33 2 oveq2i ( 1 ... 𝐿 ) = ( 1 ... ( 𝑀 + 1 ) )
34 32 33 sseqtrri ( 1 ... 𝑀 ) ⊆ ( 1 ... 𝐿 )
35 31 34 sstri ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝐿 )
36 resabs1 ( ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝐿 ) → ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) )
37 dfsbcq ( ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
38 35 36 37 mp2b ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
39 fveq1 ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝐿 ) ) → ( 𝑎𝑀 ) = ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) )
40 39 sbccomieg ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
41 elfz1end ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( 1 ... 𝑀 ) )
42 14 41 sylib ( 𝑁 ∈ ℕ0𝑀 ∈ ( 1 ... 𝑀 ) )
43 34 42 sseldi ( 𝑁 ∈ ℕ0𝑀 ∈ ( 1 ... 𝐿 ) )
44 fvres ( 𝑀 ∈ ( 1 ... 𝐿 ) → ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) = ( 𝑡𝑀 ) )
45 dfsbcq ( ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) = ( 𝑡𝑀 ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
46 43 44 45 3syl ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
47 vex 𝑡 ∈ V
48 47 resex ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ∈ V
49 fveq1 ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝐿 ) ) → ( 𝑎𝐿 ) = ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) )
50 49 sbcco3gw ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ∈ V → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
51 48 50 ax-mp ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 )
52 elfz1end ( 𝐿 ∈ ℕ ↔ 𝐿 ∈ ( 1 ... 𝐿 ) )
53 16 52 sylib ( 𝑁 ∈ ℕ0𝐿 ∈ ( 1 ... 𝐿 ) )
54 fvres ( 𝐿 ∈ ( 1 ... 𝐿 ) → ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) = ( 𝑡𝐿 ) )
55 dfsbcq ( ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) = ( 𝑡𝐿 ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
56 53 54 55 3syl ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
57 51 56 syl5bb ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
58 57 sbcbidv ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
59 46 58 bitrd ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
60 40 59 syl5bb ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
61 60 sbcbidv ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
62 38 61 syl5bb ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
63 28 62 syl5bb ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑[ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
64 26 63 syl5bb ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑[ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 ) )
65 64 rabbidv ( 𝑁 ∈ ℕ0 → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 } = { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } )
66 65 eleq1d ( 𝑁 ∈ ℕ0 → ( { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ↔ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) )
67 66 biimpar ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) )
68 3 4 2rexfrabdioph ( ( 𝐿 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐿 ) ) ∣ ∃ 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) )
69 18 67 68 syl2anc ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐿 ) ) ∣ ∃ 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) )
70 12 69 eqeltrid ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝐿 ) )
71 1 2 2rexfrabdioph ( ( 𝑁 ∈ ℕ0 ∧ { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎𝑀 ) / 𝑣 ] [ ( 𝑎𝐿 ) / 𝑤 ]𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → { 𝑢 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) )
72 70 71 syldan ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡𝑀 ) / 𝑣 ] [ ( 𝑡𝐿 ) / 𝑤 ] [ ( 𝑡𝐾 ) / 𝑥 ] [ ( 𝑡𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑢 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) )