| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexfrabdioph.1 |
⊢ 𝑀 = ( 𝑁 + 1 ) |
| 2 |
|
rexfrabdioph.2 |
⊢ 𝐿 = ( 𝑀 + 1 ) |
| 3 |
|
rexfrabdioph.3 |
⊢ 𝐾 = ( 𝐿 + 1 ) |
| 4 |
|
rexfrabdioph.4 |
⊢ 𝐽 = ( 𝐾 + 1 ) |
| 5 |
|
2sbcrex |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑦 ∈ ℕ0 𝜑 ) |
| 6 |
|
2sbcrex |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
| 7 |
6
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
| 8 |
5 7
|
bitri |
⊢ ( [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
| 9 |
8
|
sbcbii |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 ↔ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
| 10 |
|
sbc2rex |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
| 11 |
9 10
|
bitri |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 ↔ ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
| 12 |
11
|
rabbii |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 } |
| 13 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 14 |
1 13
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ℕ ) |
| 15 |
14
|
peano2nnd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ ) |
| 16 |
2 15
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 ∈ ℕ ) |
| 17 |
16
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 ∈ ℕ0 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → 𝐿 ∈ ℕ0 ) |
| 19 |
|
sbcrot3 |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ) |
| 20 |
|
sbcrot3 |
⊢ ( [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 21 |
20
|
sbcbii |
⊢ ( [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 22 |
|
sbcrot3 |
⊢ ( [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 23 |
21 22
|
bitri |
⊢ ( [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 24 |
23
|
sbcbii |
⊢ ( [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 25 |
19 24
|
bitr3i |
⊢ ( [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 26 |
25
|
sbcbii |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 27 |
|
reseq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝐿 ) ) → ( 𝑎 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) ) |
| 28 |
27
|
sbccomieg |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 29 |
|
fzssp1 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
| 30 |
1
|
oveq2i |
⊢ ( 1 ... 𝑀 ) = ( 1 ... ( 𝑁 + 1 ) ) |
| 31 |
29 30
|
sseqtrri |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) |
| 32 |
|
fzssp1 |
⊢ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) |
| 33 |
2
|
oveq2i |
⊢ ( 1 ... 𝐿 ) = ( 1 ... ( 𝑀 + 1 ) ) |
| 34 |
32 33
|
sseqtrri |
⊢ ( 1 ... 𝑀 ) ⊆ ( 1 ... 𝐿 ) |
| 35 |
31 34
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝐿 ) |
| 36 |
|
resabs1 |
⊢ ( ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝐿 ) → ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) |
| 37 |
|
dfsbcq |
⊢ ( ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 38 |
35 36 37
|
mp2b |
⊢ ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 39 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝐿 ) ) → ( 𝑎 ‘ 𝑀 ) = ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) ) |
| 40 |
39
|
sbccomieg |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 41 |
|
elfz1end |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 42 |
14 41
|
sylib |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 43 |
34 42
|
sselid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑀 ∈ ( 1 ... 𝐿 ) ) |
| 44 |
|
fvres |
⊢ ( 𝑀 ∈ ( 1 ... 𝐿 ) → ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) = ( 𝑡 ‘ 𝑀 ) ) |
| 45 |
|
dfsbcq |
⊢ ( ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) = ( 𝑡 ‘ 𝑀 ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 46 |
43 44 45
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 47 |
|
vex |
⊢ 𝑡 ∈ V |
| 48 |
47
|
resex |
⊢ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ∈ V |
| 49 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝐿 ) ) → ( 𝑎 ‘ 𝐿 ) = ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) ) |
| 50 |
49
|
sbcco3gw |
⊢ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ∈ V → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 51 |
48 50
|
ax-mp |
⊢ ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) |
| 52 |
|
elfz1end |
⊢ ( 𝐿 ∈ ℕ ↔ 𝐿 ∈ ( 1 ... 𝐿 ) ) |
| 53 |
16 52
|
sylib |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 ∈ ( 1 ... 𝐿 ) ) |
| 54 |
|
fvres |
⊢ ( 𝐿 ∈ ( 1 ... 𝐿 ) → ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) = ( 𝑡 ‘ 𝐿 ) ) |
| 55 |
|
dfsbcq |
⊢ ( ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) = ( 𝑡 ‘ 𝐿 ) → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 56 |
53 54 55
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 57 |
51 56
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 58 |
57
|
sbcbidv |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 59 |
46 58
|
bitrd |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 60 |
40 59
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 61 |
60
|
sbcbidv |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 62 |
38 61
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( ( 𝑡 ↾ ( 1 ... 𝐿 ) ) ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 63 |
28 62
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 64 |
26 63
|
bitrid |
⊢ ( 𝑁 ∈ ℕ0 → ( [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 ↔ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 ) ) |
| 65 |
64
|
rabbidv |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 } ) |
| 66 |
65
|
eleq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ↔ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) ) |
| 67 |
66
|
biimpar |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) |
| 68 |
3 4
|
2rexfrabdioph |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝐿 ) ) / 𝑎 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) |
| 69 |
18 67 68
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) |
| 70 |
12 69
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) |
| 71 |
1 2
|
2rexfrabdioph |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐿 ) ) ∣ [ ( 𝑎 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑎 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑎 ‘ 𝐿 ) / 𝑤 ] ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝐿 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ) |
| 72 |
70 71
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝐽 ) ) ∣ [ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ] [ ( 𝑡 ‘ 𝑀 ) / 𝑣 ] [ ( 𝑡 ‘ 𝐿 ) / 𝑤 ] [ ( 𝑡 ‘ 𝐾 ) / 𝑥 ] [ ( 𝑡 ‘ 𝐽 ) / 𝑦 ] 𝜑 } ∈ ( Dioph ‘ 𝐽 ) ) → { 𝑢 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑣 ∈ ℕ0 ∃ 𝑤 ∈ ℕ0 ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝜑 } ∈ ( Dioph ‘ 𝑁 ) ) |