Step |
Hyp |
Ref |
Expression |
1 |
|
rexfrabdioph.1 |
|
2 |
|
rexfrabdioph.2 |
|
3 |
|
rexfrabdioph.3 |
|
4 |
|
rexfrabdioph.4 |
|
5 |
|
2sbcrex |
|
6 |
|
2sbcrex |
|
7 |
6
|
rexbii |
|
8 |
5 7
|
bitri |
|
9 |
8
|
sbcbii |
|
10 |
|
sbc2rex |
|
11 |
9 10
|
bitri |
|
12 |
11
|
rabbii |
|
13 |
|
nn0p1nn |
|
14 |
1 13
|
eqeltrid |
|
15 |
14
|
peano2nnd |
|
16 |
2 15
|
eqeltrid |
|
17 |
16
|
nnnn0d |
|
18 |
17
|
adantr |
|
19 |
|
sbcrot3 |
|
20 |
|
sbcrot3 |
|
21 |
20
|
sbcbii |
|
22 |
|
sbcrot3 |
|
23 |
21 22
|
bitri |
|
24 |
23
|
sbcbii |
|
25 |
19 24
|
bitr3i |
|
26 |
25
|
sbcbii |
|
27 |
|
reseq1 |
|
28 |
27
|
sbccomieg |
|
29 |
|
fzssp1 |
|
30 |
1
|
oveq2i |
|
31 |
29 30
|
sseqtrri |
|
32 |
|
fzssp1 |
|
33 |
2
|
oveq2i |
|
34 |
32 33
|
sseqtrri |
|
35 |
31 34
|
sstri |
|
36 |
|
resabs1 |
|
37 |
|
dfsbcq |
|
38 |
35 36 37
|
mp2b |
|
39 |
|
fveq1 |
|
40 |
39
|
sbccomieg |
|
41 |
|
elfz1end |
|
42 |
14 41
|
sylib |
|
43 |
34 42
|
sselid |
|
44 |
|
fvres |
|
45 |
|
dfsbcq |
|
46 |
43 44 45
|
3syl |
|
47 |
|
vex |
|
48 |
47
|
resex |
|
49 |
|
fveq1 |
|
50 |
49
|
sbcco3gw |
|
51 |
48 50
|
ax-mp |
|
52 |
|
elfz1end |
|
53 |
16 52
|
sylib |
|
54 |
|
fvres |
|
55 |
|
dfsbcq |
|
56 |
53 54 55
|
3syl |
|
57 |
51 56
|
syl5bb |
|
58 |
57
|
sbcbidv |
|
59 |
46 58
|
bitrd |
|
60 |
40 59
|
syl5bb |
|
61 |
60
|
sbcbidv |
|
62 |
38 61
|
syl5bb |
|
63 |
28 62
|
syl5bb |
|
64 |
26 63
|
syl5bb |
|
65 |
64
|
rabbidv |
|
66 |
65
|
eleq1d |
|
67 |
66
|
biimpar |
|
68 |
3 4
|
2rexfrabdioph |
|
69 |
18 67 68
|
syl2anc |
|
70 |
12 69
|
eqeltrid |
|
71 |
1 2
|
2rexfrabdioph |
|
72 |
70 71
|
syldan |
|