Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexfrabdioph.1 | |
|
rexfrabdioph.2 | |
||
Assertion | 2rexfrabdioph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexfrabdioph.1 | |
|
2 | rexfrabdioph.2 | |
|
3 | 2sbcrex | |
|
4 | 3 | rabbii | |
5 | peano2nn0 | |
|
6 | 1 5 | eqeltrid | |
7 | 6 | adantr | |
8 | sbcrot3 | |
|
9 | 8 | sbcbii | |
10 | reseq1 | |
|
11 | 10 | sbccomieg | |
12 | fzssp1 | |
|
13 | 1 | oveq2i | |
14 | 12 13 | sseqtrri | |
15 | resabs1 | |
|
16 | dfsbcq | |
|
17 | 14 15 16 | mp2b | |
18 | vex | |
|
19 | 18 | resex | |
20 | fveq1 | |
|
21 | 20 | sbcco3gw | |
22 | 19 21 | ax-mp | |
23 | nn0p1nn | |
|
24 | 1 23 | eqeltrid | |
25 | elfz1end | |
|
26 | 24 25 | sylib | |
27 | fvres | |
|
28 | dfsbcq | |
|
29 | 26 27 28 | 3syl | |
30 | 22 29 | bitrid | |
31 | 30 | sbcbidv | |
32 | 17 31 | bitrid | |
33 | 11 32 | bitrid | |
34 | 9 33 | bitr2id | |
35 | 34 | rabbidv | |
36 | 35 | eleq1d | |
37 | 36 | biimpa | |
38 | 2 | rexfrabdioph | |
39 | 7 37 38 | syl2anc | |
40 | 4 39 | eqeltrid | |
41 | 1 | rexfrabdioph | |
42 | 40 41 | syldan | |