Metamath Proof Explorer


Theorem 2rexfrabdioph

Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses rexfrabdioph.1 M=N+1
rexfrabdioph.2 L=M+1
Assertion 2rexfrabdioph N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φDiophLu01N|v0w0φDiophN

Proof

Step Hyp Ref Expression
1 rexfrabdioph.1 M=N+1
2 rexfrabdioph.2 L=M+1
3 2sbcrex [˙a1N/u]˙[˙aM/v]˙w0φw0[˙a1N/u]˙[˙aM/v]˙φ
4 3 rabbii a01M|[˙a1N/u]˙[˙aM/v]˙w0φ=a01M|w0[˙a1N/u]˙[˙aM/v]˙φ
5 peano2nn0 N0N+10
6 1 5 eqeltrid N0M0
7 6 adantr N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φDiophLM0
8 sbcrot3 [˙tL/w]˙[˙a1N/u]˙[˙aM/v]˙φ[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙φ
9 8 sbcbii [˙t1M/a]˙[˙tL/w]˙[˙a1N/u]˙[˙aM/v]˙φ[˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙φ
10 reseq1 a=t1Ma1N=t1M1N
11 10 sbccomieg [˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ
12 fzssp1 1N1N+1
13 1 oveq2i 1M=1N+1
14 12 13 sseqtrri 1N1M
15 resabs1 1N1Mt1M1N=t1N
16 dfsbcq t1M1N=t1N[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ
17 14 15 16 mp2b [˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ
18 vex tV
19 18 resex t1MV
20 fveq1 a=t1MaM=t1MM
21 20 sbcco3gw t1MV[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1MM/v]˙[˙tL/w]˙φ
22 19 21 ax-mp [˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1MM/v]˙[˙tL/w]˙φ
23 nn0p1nn N0N+1
24 1 23 eqeltrid N0M
25 elfz1end MM1M
26 24 25 sylib N0M1M
27 fvres M1Mt1MM=tM
28 dfsbcq t1MM=tM[˙t1MM/v]˙[˙tL/w]˙φ[˙tM/v]˙[˙tL/w]˙φ
29 26 27 28 3syl N0[˙t1MM/v]˙[˙tL/w]˙φ[˙tM/v]˙[˙tL/w]˙φ
30 22 29 bitrid N0[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ[˙tM/v]˙[˙tL/w]˙φ
31 30 sbcbidv N0[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φ
32 17 31 bitrid N0[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φ
33 11 32 bitrid N0[˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φ
34 9 33 bitr2id N0[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φ[˙t1M/a]˙[˙tL/w]˙[˙a1N/u]˙[˙aM/v]˙φ
35 34 rabbidv N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φ=t01L|[˙t1M/a]˙[˙tL/w]˙[˙a1N/u]˙[˙aM/v]˙φ
36 35 eleq1d N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φDiophLt01L|[˙t1M/a]˙[˙tL/w]˙[˙a1N/u]˙[˙aM/v]˙φDiophL
37 36 biimpa N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φDiophLt01L|[˙t1M/a]˙[˙tL/w]˙[˙a1N/u]˙[˙aM/v]˙φDiophL
38 2 rexfrabdioph M0t01L|[˙t1M/a]˙[˙tL/w]˙[˙a1N/u]˙[˙aM/v]˙φDiophLa01M|w0[˙a1N/u]˙[˙aM/v]˙φDiophM
39 7 37 38 syl2anc N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φDiophLa01M|w0[˙a1N/u]˙[˙aM/v]˙φDiophM
40 4 39 eqeltrid N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φDiophLa01M|[˙a1N/u]˙[˙aM/v]˙w0φDiophM
41 1 rexfrabdioph N0a01M|[˙a1N/u]˙[˙aM/v]˙w0φDiophMu01N|v0w0φDiophN
42 40 41 syldan N0t01L|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙φDiophLu01N|v0w0φDiophN