Step |
Hyp |
Ref |
Expression |
1 |
|
rexfrabdioph.1 |
|- M = ( N + 1 ) |
2 |
|
rexfrabdioph.2 |
|- L = ( M + 1 ) |
3 |
|
2sbcrex |
|- ( [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 ph <-> E. w e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph ) |
4 |
3
|
rabbii |
|- { a e. ( NN0 ^m ( 1 ... M ) ) | [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 ph } = { a e. ( NN0 ^m ( 1 ... M ) ) | E. w e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } |
5 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
6 |
1 5
|
eqeltrid |
|- ( N e. NN0 -> M e. NN0 ) |
7 |
6
|
adantr |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph } e. ( Dioph ` L ) ) -> M e. NN0 ) |
8 |
|
sbcrot3 |
|- ( [. ( t ` L ) / w ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph <-> [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph ) |
9 |
8
|
sbcbii |
|- ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph <-> [. ( t |` ( 1 ... M ) ) / a ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph ) |
10 |
|
reseq1 |
|- ( a = ( t |` ( 1 ... M ) ) -> ( a |` ( 1 ... N ) ) = ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) |
11 |
10
|
sbccomieg |
|- ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph ) |
12 |
|
fzssp1 |
|- ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) |
13 |
1
|
oveq2i |
|- ( 1 ... M ) = ( 1 ... ( N + 1 ) ) |
14 |
12 13
|
sseqtrri |
|- ( 1 ... N ) C_ ( 1 ... M ) |
15 |
|
resabs1 |
|- ( ( 1 ... N ) C_ ( 1 ... M ) -> ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) = ( t |` ( 1 ... N ) ) ) |
16 |
|
dfsbcq |
|- ( ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) = ( t |` ( 1 ... N ) ) -> ( [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
17 |
14 15 16
|
mp2b |
|- ( [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph ) |
18 |
|
vex |
|- t e. _V |
19 |
18
|
resex |
|- ( t |` ( 1 ... M ) ) e. _V |
20 |
|
fveq1 |
|- ( a = ( t |` ( 1 ... M ) ) -> ( a ` M ) = ( ( t |` ( 1 ... M ) ) ` M ) ) |
21 |
20
|
sbcco3gw |
|- ( ( t |` ( 1 ... M ) ) e. _V -> ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
22 |
19 21
|
ax-mp |
|- ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. ph ) |
23 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
24 |
1 23
|
eqeltrid |
|- ( N e. NN0 -> M e. NN ) |
25 |
|
elfz1end |
|- ( M e. NN <-> M e. ( 1 ... M ) ) |
26 |
24 25
|
sylib |
|- ( N e. NN0 -> M e. ( 1 ... M ) ) |
27 |
|
fvres |
|- ( M e. ( 1 ... M ) -> ( ( t |` ( 1 ... M ) ) ` M ) = ( t ` M ) ) |
28 |
|
dfsbcq |
|- ( ( ( t |` ( 1 ... M ) ) ` M ) = ( t ` M ) -> ( [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
29 |
26 27 28
|
3syl |
|- ( N e. NN0 -> ( [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
30 |
22 29
|
syl5bb |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
31 |
30
|
sbcbidv |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
32 |
17 31
|
syl5bb |
|- ( N e. NN0 -> ( [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
33 |
11 32
|
syl5bb |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph ) ) |
34 |
9 33
|
bitr2id |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph <-> [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph ) ) |
35 |
34
|
rabbidv |
|- ( N e. NN0 -> { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph } = { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } ) |
36 |
35
|
eleq1d |
|- ( N e. NN0 -> ( { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph } e. ( Dioph ` L ) <-> { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` L ) ) ) |
37 |
36
|
biimpa |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph } e. ( Dioph ` L ) ) -> { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` L ) ) |
38 |
2
|
rexfrabdioph |
|- ( ( M e. NN0 /\ { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` L ) ) -> { a e. ( NN0 ^m ( 1 ... M ) ) | E. w e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` M ) ) |
39 |
7 37 38
|
syl2anc |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph } e. ( Dioph ` L ) ) -> { a e. ( NN0 ^m ( 1 ... M ) ) | E. w e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` M ) ) |
40 |
4 39
|
eqeltrid |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph } e. ( Dioph ` L ) ) -> { a e. ( NN0 ^m ( 1 ... M ) ) | [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 ph } e. ( Dioph ` M ) ) |
41 |
1
|
rexfrabdioph |
|- ( ( N e. NN0 /\ { a e. ( NN0 ^m ( 1 ... M ) ) | [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 ph } e. ( Dioph ` M ) ) -> { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 E. w e. NN0 ph } e. ( Dioph ` N ) ) |
42 |
40 41
|
syldan |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... L ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. ph } e. ( Dioph ` L ) ) -> { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 E. w e. NN0 ph } e. ( Dioph ` N ) ) |