Step |
Hyp |
Ref |
Expression |
1 |
|
rexfrabdioph.1 |
|- M = ( N + 1 ) |
2 |
|
rexfrabdioph.2 |
|- L = ( M + 1 ) |
3 |
|
rexfrabdioph.3 |
|- K = ( L + 1 ) |
4 |
|
sbc2rex |
|- ( [. ( a ` M ) / v ]. E. w e. NN0 E. x e. NN0 ph <-> E. w e. NN0 E. x e. NN0 [. ( a ` M ) / v ]. ph ) |
5 |
4
|
sbcbii |
|- ( [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 E. x e. NN0 ph <-> [. ( a |` ( 1 ... N ) ) / u ]. E. w e. NN0 E. x e. NN0 [. ( a ` M ) / v ]. ph ) |
6 |
|
sbc2rex |
|- ( [. ( a |` ( 1 ... N ) ) / u ]. E. w e. NN0 E. x e. NN0 [. ( a ` M ) / v ]. ph <-> E. w e. NN0 E. x e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph ) |
7 |
5 6
|
bitri |
|- ( [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 E. x e. NN0 ph <-> E. w e. NN0 E. x e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph ) |
8 |
7
|
rabbii |
|- { a e. ( NN0 ^m ( 1 ... M ) ) | [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 E. x e. NN0 ph } = { a e. ( NN0 ^m ( 1 ... M ) ) | E. w e. NN0 E. x e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } |
9 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
10 |
1 9
|
eqeltrid |
|- ( N e. NN0 -> M e. NN ) |
11 |
10
|
nnnn0d |
|- ( N e. NN0 -> M e. NN0 ) |
12 |
11
|
adantr |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph } e. ( Dioph ` K ) ) -> M e. NN0 ) |
13 |
|
sbcrot3 |
|- ( [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a ` M ) / v ]. ph ) |
14 |
13
|
sbcbii |
|- ( [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( a |` ( 1 ... N ) ) / u ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a ` M ) / v ]. ph ) |
15 |
|
sbcrot3 |
|- ( [. ( a |` ( 1 ... N ) ) / u ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a ` M ) / v ]. ph <-> [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph ) |
16 |
14 15
|
bitri |
|- ( [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph ) |
17 |
16
|
sbcbii |
|- ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph ) |
18 |
|
reseq1 |
|- ( a = ( t |` ( 1 ... M ) ) -> ( a |` ( 1 ... N ) ) = ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) ) |
19 |
18
|
sbccomieg |
|- ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) |
20 |
|
fzssp1 |
|- ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) |
21 |
1
|
oveq2i |
|- ( 1 ... M ) = ( 1 ... ( N + 1 ) ) |
22 |
20 21
|
sseqtrri |
|- ( 1 ... N ) C_ ( 1 ... M ) |
23 |
|
resabs1 |
|- ( ( 1 ... N ) C_ ( 1 ... M ) -> ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) = ( t |` ( 1 ... N ) ) ) |
24 |
|
dfsbcq |
|- ( ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) = ( t |` ( 1 ... N ) ) -> ( [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
25 |
22 23 24
|
mp2b |
|- ( [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) |
26 |
|
vex |
|- t e. _V |
27 |
26
|
resex |
|- ( t |` ( 1 ... M ) ) e. _V |
28 |
|
fveq1 |
|- ( a = ( t |` ( 1 ... M ) ) -> ( a ` M ) = ( ( t |` ( 1 ... M ) ) ` M ) ) |
29 |
28
|
sbcco3gw |
|- ( ( t |` ( 1 ... M ) ) e. _V -> ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
30 |
27 29
|
ax-mp |
|- ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) |
31 |
|
elfz1end |
|- ( M e. NN <-> M e. ( 1 ... M ) ) |
32 |
10 31
|
sylib |
|- ( N e. NN0 -> M e. ( 1 ... M ) ) |
33 |
|
fvres |
|- ( M e. ( 1 ... M ) -> ( ( t |` ( 1 ... M ) ) ` M ) = ( t ` M ) ) |
34 |
|
dfsbcq |
|- ( ( ( t |` ( 1 ... M ) ) ` M ) = ( t ` M ) -> ( [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
35 |
32 33 34
|
3syl |
|- ( N e. NN0 -> ( [. ( ( t |` ( 1 ... M ) ) ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
36 |
30 35
|
syl5bb |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
37 |
36
|
sbcbidv |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
38 |
25 37
|
syl5bb |
|- ( N e. NN0 -> ( [. ( ( t |` ( 1 ... M ) ) |` ( 1 ... N ) ) / u ]. [. ( t |` ( 1 ... M ) ) / a ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
39 |
19 38
|
syl5bb |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
40 |
17 39
|
bitr3id |
|- ( N e. NN0 -> ( [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph ) ) |
41 |
40
|
rabbidv |
|- ( N e. NN0 -> { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } = { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph } ) |
42 |
41
|
eleq1d |
|- ( N e. NN0 -> ( { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` K ) <-> { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph } e. ( Dioph ` K ) ) ) |
43 |
42
|
biimpar |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph } e. ( Dioph ` K ) ) -> { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` K ) ) |
44 |
2 3
|
2rexfrabdioph |
|- ( ( M e. NN0 /\ { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... M ) ) / a ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` K ) ) -> { a e. ( NN0 ^m ( 1 ... M ) ) | E. w e. NN0 E. x e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` M ) ) |
45 |
12 43 44
|
syl2anc |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph } e. ( Dioph ` K ) ) -> { a e. ( NN0 ^m ( 1 ... M ) ) | E. w e. NN0 E. x e. NN0 [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. ph } e. ( Dioph ` M ) ) |
46 |
8 45
|
eqeltrid |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph } e. ( Dioph ` K ) ) -> { a e. ( NN0 ^m ( 1 ... M ) ) | [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 E. x e. NN0 ph } e. ( Dioph ` M ) ) |
47 |
1
|
rexfrabdioph |
|- ( ( N e. NN0 /\ { a e. ( NN0 ^m ( 1 ... M ) ) | [. ( a |` ( 1 ... N ) ) / u ]. [. ( a ` M ) / v ]. E. w e. NN0 E. x e. NN0 ph } e. ( Dioph ` M ) ) -> { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 E. w e. NN0 E. x e. NN0 ph } e. ( Dioph ` N ) ) |
48 |
46 47
|
syldan |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... K ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. [. ( t ` L ) / w ]. [. ( t ` K ) / x ]. ph } e. ( Dioph ` K ) ) -> { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 E. w e. NN0 E. x e. NN0 ph } e. ( Dioph ` N ) ) |