Metamath Proof Explorer


Theorem 3rexfrabdioph

Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses rexfrabdioph.1 M=N+1
rexfrabdioph.2 L=M+1
rexfrabdioph.3 K=L+1
Assertion 3rexfrabdioph N0t01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φDiophKu01N|v0w0x0φDiophN

Proof

Step Hyp Ref Expression
1 rexfrabdioph.1 M=N+1
2 rexfrabdioph.2 L=M+1
3 rexfrabdioph.3 K=L+1
4 sbc2rex [˙aM/v]˙w0x0φw0x0[˙aM/v]˙φ
5 4 sbcbii [˙a1N/u]˙[˙aM/v]˙w0x0φ[˙a1N/u]˙w0x0[˙aM/v]˙φ
6 sbc2rex [˙a1N/u]˙w0x0[˙aM/v]˙φw0x0[˙a1N/u]˙[˙aM/v]˙φ
7 5 6 bitri [˙a1N/u]˙[˙aM/v]˙w0x0φw0x0[˙a1N/u]˙[˙aM/v]˙φ
8 7 rabbii a01M|[˙a1N/u]˙[˙aM/v]˙w0x0φ=a01M|w0x0[˙a1N/u]˙[˙aM/v]˙φ
9 nn0p1nn N0N+1
10 1 9 eqeltrid N0M
11 10 nnnn0d N0M0
12 11 adantr N0t01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φDiophKM0
13 sbcrot3 [˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙tL/w]˙[˙tK/x]˙[˙aM/v]˙φ
14 13 sbcbii [˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙a1N/u]˙[˙tL/w]˙[˙tK/x]˙[˙aM/v]˙φ
15 sbcrot3 [˙a1N/u]˙[˙tL/w]˙[˙tK/x]˙[˙aM/v]˙φ[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φ
16 14 15 bitri [˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φ
17 16 sbcbii [˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φ
18 reseq1 a=t1Ma1N=t1M1N
19 18 sbccomieg [˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ
20 fzssp1 1N1N+1
21 1 oveq2i 1M=1N+1
22 20 21 sseqtrri 1N1M
23 resabs1 1N1Mt1M1N=t1N
24 dfsbcq t1M1N=t1N[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ
25 22 23 24 mp2b [˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ
26 vex tV
27 26 resex t1MV
28 fveq1 a=t1MaM=t1MM
29 28 sbcco3gw t1MV[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙φ
30 27 29 ax-mp [˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙φ
31 elfz1end MM1M
32 10 31 sylib N0M1M
33 fvres M1Mt1MM=tM
34 dfsbcq t1MM=tM[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
35 32 33 34 3syl N0[˙t1MM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
36 30 35 bitrid N0[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
37 36 sbcbidv N0[˙t1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
38 25 37 bitrid N0[˙t1M1N/u]˙[˙t1M/a]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
39 19 38 bitrid N0[˙t1M/a]˙[˙a1N/u]˙[˙aM/v]˙[˙tL/w]˙[˙tK/x]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
40 17 39 bitr3id N0[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
41 40 rabbidv N0t01K|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φ=t01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φ
42 41 eleq1d N0t01K|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φDiophKt01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φDiophK
43 42 biimpar N0t01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φDiophKt01K|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φDiophK
44 2 3 2rexfrabdioph M0t01K|[˙t1M/a]˙[˙tL/w]˙[˙tK/x]˙[˙a1N/u]˙[˙aM/v]˙φDiophKa01M|w0x0[˙a1N/u]˙[˙aM/v]˙φDiophM
45 12 43 44 syl2anc N0t01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φDiophKa01M|w0x0[˙a1N/u]˙[˙aM/v]˙φDiophM
46 8 45 eqeltrid N0t01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φDiophKa01M|[˙a1N/u]˙[˙aM/v]˙w0x0φDiophM
47 1 rexfrabdioph N0a01M|[˙a1N/u]˙[˙aM/v]˙w0x0φDiophMu01N|v0w0x0φDiophN
48 46 47 syldan N0t01K|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙φDiophKu01N|v0w0x0φDiophN