Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexfrabdioph.1 | |
|
rexfrabdioph.2 | |
||
rexfrabdioph.3 | |
||
Assertion | 3rexfrabdioph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexfrabdioph.1 | |
|
2 | rexfrabdioph.2 | |
|
3 | rexfrabdioph.3 | |
|
4 | sbc2rex | |
|
5 | 4 | sbcbii | |
6 | sbc2rex | |
|
7 | 5 6 | bitri | |
8 | 7 | rabbii | |
9 | nn0p1nn | |
|
10 | 1 9 | eqeltrid | |
11 | 10 | nnnn0d | |
12 | 11 | adantr | |
13 | sbcrot3 | |
|
14 | 13 | sbcbii | |
15 | sbcrot3 | |
|
16 | 14 15 | bitri | |
17 | 16 | sbcbii | |
18 | reseq1 | |
|
19 | 18 | sbccomieg | |
20 | fzssp1 | |
|
21 | 1 | oveq2i | |
22 | 20 21 | sseqtrri | |
23 | resabs1 | |
|
24 | dfsbcq | |
|
25 | 22 23 24 | mp2b | |
26 | vex | |
|
27 | 26 | resex | |
28 | fveq1 | |
|
29 | 28 | sbcco3gw | |
30 | 27 29 | ax-mp | |
31 | elfz1end | |
|
32 | 10 31 | sylib | |
33 | fvres | |
|
34 | dfsbcq | |
|
35 | 32 33 34 | 3syl | |
36 | 30 35 | bitrid | |
37 | 36 | sbcbidv | |
38 | 25 37 | bitrid | |
39 | 19 38 | bitrid | |
40 | 17 39 | bitr3id | |
41 | 40 | rabbidv | |
42 | 41 | eleq1d | |
43 | 42 | biimpar | |
44 | 2 3 | 2rexfrabdioph | |
45 | 12 43 44 | syl2anc | |
46 | 8 45 | eqeltrid | |
47 | 1 | rexfrabdioph | |
48 | 46 47 | syldan | |