| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexfrabdioph.1 |  |-  M = ( N + 1 ) | 
						
							| 2 |  | nfcv |  |-  F/_ u ( NN0 ^m ( 1 ... N ) ) | 
						
							| 3 |  | nfcv |  |-  F/_ a ( NN0 ^m ( 1 ... N ) ) | 
						
							| 4 |  | nfv |  |-  F/ a E. v e. NN0 ph | 
						
							| 5 |  | nfcv |  |-  F/_ u NN0 | 
						
							| 6 |  | nfsbc1v |  |-  F/ u [. a / u ]. [. b / v ]. ph | 
						
							| 7 | 5 6 | nfrexw |  |-  F/ u E. b e. NN0 [. a / u ]. [. b / v ]. ph | 
						
							| 8 |  | nfv |  |-  F/ b ph | 
						
							| 9 |  | nfsbc1v |  |-  F/ v [. b / v ]. ph | 
						
							| 10 |  | sbceq1a |  |-  ( v = b -> ( ph <-> [. b / v ]. ph ) ) | 
						
							| 11 | 8 9 10 | cbvrexw |  |-  ( E. v e. NN0 ph <-> E. b e. NN0 [. b / v ]. ph ) | 
						
							| 12 |  | sbceq1a |  |-  ( u = a -> ( [. b / v ]. ph <-> [. a / u ]. [. b / v ]. ph ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( u = a -> ( E. b e. NN0 [. b / v ]. ph <-> E. b e. NN0 [. a / u ]. [. b / v ]. ph ) ) | 
						
							| 14 | 11 13 | bitrid |  |-  ( u = a -> ( E. v e. NN0 ph <-> E. b e. NN0 [. a / u ]. [. b / v ]. ph ) ) | 
						
							| 15 | 2 3 4 7 14 | cbvrabw |  |-  { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 ph } = { a e. ( NN0 ^m ( 1 ... N ) ) | E. b e. NN0 [. a / u ]. [. b / v ]. ph } | 
						
							| 16 |  | dfsbcq |  |-  ( b = ( t ` M ) -> ( [. b / v ]. ph <-> [. ( t ` M ) / v ]. ph ) ) | 
						
							| 17 | 16 | sbcbidv |  |-  ( b = ( t ` M ) -> ( [. a / u ]. [. b / v ]. ph <-> [. a / u ]. [. ( t ` M ) / v ]. ph ) ) | 
						
							| 18 |  | dfsbcq |  |-  ( a = ( t |` ( 1 ... N ) ) -> ( [. a / u ]. [. ( t ` M ) / v ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. ph ) ) | 
						
							| 19 | 1 17 18 | rexrabdioph |  |-  ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... M ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. ph } e. ( Dioph ` M ) ) -> { a e. ( NN0 ^m ( 1 ... N ) ) | E. b e. NN0 [. a / u ]. [. b / v ]. ph } e. ( Dioph ` N ) ) | 
						
							| 20 | 15 19 | eqeltrid |  |-  ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... M ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. ph } e. ( Dioph ` M ) ) -> { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 ph } e. ( Dioph ` N ) ) |