| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexfrabdioph.1 |
|- M = ( N + 1 ) |
| 2 |
|
nfcv |
|- F/_ u ( NN0 ^m ( 1 ... N ) ) |
| 3 |
|
nfcv |
|- F/_ a ( NN0 ^m ( 1 ... N ) ) |
| 4 |
|
nfv |
|- F/ a E. v e. NN0 ph |
| 5 |
|
nfcv |
|- F/_ u NN0 |
| 6 |
|
nfsbc1v |
|- F/ u [. a / u ]. [. b / v ]. ph |
| 7 |
5 6
|
nfrexw |
|- F/ u E. b e. NN0 [. a / u ]. [. b / v ]. ph |
| 8 |
|
nfv |
|- F/ b ph |
| 9 |
|
nfsbc1v |
|- F/ v [. b / v ]. ph |
| 10 |
|
sbceq1a |
|- ( v = b -> ( ph <-> [. b / v ]. ph ) ) |
| 11 |
8 9 10
|
cbvrexw |
|- ( E. v e. NN0 ph <-> E. b e. NN0 [. b / v ]. ph ) |
| 12 |
|
sbceq1a |
|- ( u = a -> ( [. b / v ]. ph <-> [. a / u ]. [. b / v ]. ph ) ) |
| 13 |
12
|
rexbidv |
|- ( u = a -> ( E. b e. NN0 [. b / v ]. ph <-> E. b e. NN0 [. a / u ]. [. b / v ]. ph ) ) |
| 14 |
11 13
|
bitrid |
|- ( u = a -> ( E. v e. NN0 ph <-> E. b e. NN0 [. a / u ]. [. b / v ]. ph ) ) |
| 15 |
2 3 4 7 14
|
cbvrabw |
|- { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 ph } = { a e. ( NN0 ^m ( 1 ... N ) ) | E. b e. NN0 [. a / u ]. [. b / v ]. ph } |
| 16 |
|
dfsbcq |
|- ( b = ( t ` M ) -> ( [. b / v ]. ph <-> [. ( t ` M ) / v ]. ph ) ) |
| 17 |
16
|
sbcbidv |
|- ( b = ( t ` M ) -> ( [. a / u ]. [. b / v ]. ph <-> [. a / u ]. [. ( t ` M ) / v ]. ph ) ) |
| 18 |
|
dfsbcq |
|- ( a = ( t |` ( 1 ... N ) ) -> ( [. a / u ]. [. ( t ` M ) / v ]. ph <-> [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. ph ) ) |
| 19 |
1 17 18
|
rexrabdioph |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... M ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. ph } e. ( Dioph ` M ) ) -> { a e. ( NN0 ^m ( 1 ... N ) ) | E. b e. NN0 [. a / u ]. [. b / v ]. ph } e. ( Dioph ` N ) ) |
| 20 |
15 19
|
eqeltrid |
|- ( ( N e. NN0 /\ { t e. ( NN0 ^m ( 1 ... M ) ) | [. ( t |` ( 1 ... N ) ) / u ]. [. ( t ` M ) / v ]. ph } e. ( Dioph ` M ) ) -> { u e. ( NN0 ^m ( 1 ... N ) ) | E. v e. NN0 ph } e. ( Dioph ` N ) ) |