Step |
Hyp |
Ref |
Expression |
1 |
|
rabdiophlem2.1 |
⊢ 𝑀 = ( 𝑁 + 1 ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐴 |
3 |
|
nfcsb1v |
⊢ Ⅎ 𝑢 ⦋ 𝑎 / 𝑢 ⦌ 𝐴 |
4 |
|
csbeq1a |
⊢ ( 𝑢 = 𝑎 → 𝐴 = ⦋ 𝑎 / 𝑢 ⦌ 𝐴 ) |
5 |
2 3 4
|
cbvmpt |
⊢ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) = ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ⦋ 𝑎 / 𝑢 ⦌ 𝐴 ) |
6 |
5
|
fveq1i |
⊢ ( ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) = ( ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ⦋ 𝑎 / 𝑢 ⦌ 𝐴 ) ‘ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) |
7 |
|
eqid |
⊢ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ⦋ 𝑎 / 𝑢 ⦌ 𝐴 ) = ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ⦋ 𝑎 / 𝑢 ⦌ 𝐴 ) |
8 |
|
csbeq1 |
⊢ ( 𝑎 = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → ⦋ 𝑎 / 𝑢 ⦌ 𝐴 = ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ) |
9 |
1
|
mapfzcons1cl |
⊢ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) → ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ) → ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ) |
11 |
|
mzpf |
⊢ ( ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) → ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) : ( ℤ ↑m ( 1 ... 𝑁 ) ) ⟶ ℤ ) |
12 |
|
eqid |
⊢ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) = ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) |
13 |
12
|
fmpt |
⊢ ( ∀ 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) 𝐴 ∈ ℤ ↔ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) : ( ℤ ↑m ( 1 ... 𝑁 ) ) ⟶ ℤ ) |
14 |
11 13
|
sylibr |
⊢ ( ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) → ∀ 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) 𝐴 ∈ ℤ ) |
15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ) → ∀ 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) 𝐴 ∈ ℤ ) |
16 |
|
nfcsb1v |
⊢ Ⅎ 𝑢 ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 |
17 |
16
|
nfel1 |
⊢ Ⅎ 𝑢 ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ∈ ℤ |
18 |
|
csbeq1a |
⊢ ( 𝑢 = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → 𝐴 = ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ) |
19 |
18
|
eleq1d |
⊢ ( 𝑢 = ( 𝑡 ↾ ( 1 ... 𝑁 ) ) → ( 𝐴 ∈ ℤ ↔ ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ∈ ℤ ) ) |
20 |
17 19
|
rspc |
⊢ ( ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) → ( ∀ 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) 𝐴 ∈ ℤ → ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ∈ ℤ ) ) |
21 |
10 15 20
|
sylc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ) → ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ∈ ℤ ) |
22 |
7 8 10 21
|
fvmptd3 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ) → ( ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ⦋ 𝑎 / 𝑢 ⦌ 𝐴 ) ‘ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) = ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ) |
23 |
6 22
|
eqtr2id |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ) → ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 = ( ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) ) |
24 |
23
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ↦ ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ) = ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ↦ ( ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) ) ) |
25 |
|
ovexd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 1 ... 𝑀 ) ∈ V ) |
26 |
|
fzssp1 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... ( 𝑁 + 1 ) ) |
27 |
1
|
oveq2i |
⊢ ( 1 ... 𝑀 ) = ( 1 ... ( 𝑁 + 1 ) ) |
28 |
26 27
|
sseqtrri |
⊢ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) |
29 |
28
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) ) |
30 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) |
31 |
|
mzpresrename |
⊢ ( ( ( 1 ... 𝑀 ) ∈ V ∧ ( 1 ... 𝑁 ) ⊆ ( 1 ... 𝑀 ) ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ↦ ( ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) ) ∈ ( mzPoly ‘ ( 1 ... 𝑀 ) ) ) |
32 |
25 29 30 31
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ↦ ( ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ‘ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) ) ) ∈ ( mzPoly ‘ ( 1 ... 𝑀 ) ) ) |
33 |
24 32
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑢 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑀 ) ) ↦ ⦋ ( 𝑡 ↾ ( 1 ... 𝑁 ) ) / 𝑢 ⦌ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑀 ) ) ) |