Metamath Proof Explorer


Theorem rexzrexnn0

Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypotheses rexzrexnn0.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
rexzrexnn0.2 ( 𝑥 = - 𝑦 → ( 𝜑𝜒 ) )
Assertion rexzrexnn0 ( ∃ 𝑥 ∈ ℤ 𝜑 ↔ ∃ 𝑦 ∈ ℕ0 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexzrexnn0.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 rexzrexnn0.2 ( 𝑥 = - 𝑦 → ( 𝜑𝜒 ) )
3 elznn0 ( 𝑥 ∈ ℤ ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) ) )
4 3 simprbi ( 𝑥 ∈ ℤ → ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) )
5 4 adantr ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) )
6 simpr ( ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 )
7 simplr ( ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) ∧ 𝑥 ∈ ℕ0 ) → 𝜑 )
8 1 equcoms ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
9 8 bicomd ( 𝑦 = 𝑥 → ( 𝜓𝜑 ) )
10 9 rspcev ( ( 𝑥 ∈ ℕ0𝜑 ) → ∃ 𝑦 ∈ ℕ0 𝜓 )
11 6 7 10 syl2anc ( ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) ∧ 𝑥 ∈ ℕ0 ) → ∃ 𝑦 ∈ ℕ0 𝜓 )
12 11 ex ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( 𝑥 ∈ ℕ0 → ∃ 𝑦 ∈ ℕ0 𝜓 ) )
13 simpr ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℕ0 ) → - 𝑥 ∈ ℕ0 )
14 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
15 14 negnegd ( 𝑥 ∈ ℤ → - - 𝑥 = 𝑥 )
16 15 eqcomd ( 𝑥 ∈ ℤ → 𝑥 = - - 𝑥 )
17 negeq ( 𝑦 = - 𝑥 → - 𝑦 = - - 𝑥 )
18 17 eqeq2d ( 𝑦 = - 𝑥 → ( 𝑥 = - 𝑦𝑥 = - - 𝑥 ) )
19 16 18 syl5ibrcom ( 𝑥 ∈ ℤ → ( 𝑦 = - 𝑥𝑥 = - 𝑦 ) )
20 19 imp ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → 𝑥 = - 𝑦 )
21 20 2 syl ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜑𝜒 ) )
22 21 bicomd ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜒𝜑 ) )
23 22 adantlr ( ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℕ0 ) ∧ 𝑦 = - 𝑥 ) → ( 𝜒𝜑 ) )
24 13 23 rspcedv ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℕ0 ) → ( 𝜑 → ∃ 𝑦 ∈ ℕ0 𝜒 ) )
25 24 impancom ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( - 𝑥 ∈ ℕ0 → ∃ 𝑦 ∈ ℕ0 𝜒 ) )
26 12 25 orim12d ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) → ( ∃ 𝑦 ∈ ℕ0 𝜓 ∨ ∃ 𝑦 ∈ ℕ0 𝜒 ) ) )
27 5 26 mpd ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( ∃ 𝑦 ∈ ℕ0 𝜓 ∨ ∃ 𝑦 ∈ ℕ0 𝜒 ) )
28 r19.43 ( ∃ 𝑦 ∈ ℕ0 ( 𝜓𝜒 ) ↔ ( ∃ 𝑦 ∈ ℕ0 𝜓 ∨ ∃ 𝑦 ∈ ℕ0 𝜒 ) )
29 27 28 sylibr ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ∃ 𝑦 ∈ ℕ0 ( 𝜓𝜒 ) )
30 29 rexlimiva ( ∃ 𝑥 ∈ ℤ 𝜑 → ∃ 𝑦 ∈ ℕ0 ( 𝜓𝜒 ) )
31 nn0z ( 𝑦 ∈ ℕ0𝑦 ∈ ℤ )
32 1 rspcev ( ( 𝑦 ∈ ℤ ∧ 𝜓 ) → ∃ 𝑥 ∈ ℤ 𝜑 )
33 31 32 sylan ( ( 𝑦 ∈ ℕ0𝜓 ) → ∃ 𝑥 ∈ ℤ 𝜑 )
34 nn0negz ( 𝑦 ∈ ℕ0 → - 𝑦 ∈ ℤ )
35 2 rspcev ( ( - 𝑦 ∈ ℤ ∧ 𝜒 ) → ∃ 𝑥 ∈ ℤ 𝜑 )
36 34 35 sylan ( ( 𝑦 ∈ ℕ0𝜒 ) → ∃ 𝑥 ∈ ℤ 𝜑 )
37 33 36 jaodan ( ( 𝑦 ∈ ℕ0 ∧ ( 𝜓𝜒 ) ) → ∃ 𝑥 ∈ ℤ 𝜑 )
38 37 rexlimiva ( ∃ 𝑦 ∈ ℕ0 ( 𝜓𝜒 ) → ∃ 𝑥 ∈ ℤ 𝜑 )
39 30 38 impbii ( ∃ 𝑥 ∈ ℤ 𝜑 ↔ ∃ 𝑦 ∈ ℕ0 ( 𝜓𝜒 ) )