Step |
Hyp |
Ref |
Expression |
1 |
|
rexzrexnn0.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
rexzrexnn0.2 |
⊢ ( 𝑥 = - 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
elznn0 |
⊢ ( 𝑥 ∈ ℤ ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) ) |
6 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
7 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) ∧ 𝑥 ∈ ℕ0 ) → 𝜑 ) |
8 |
1
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜑 ↔ 𝜓 ) ) |
9 |
8
|
bicomd |
⊢ ( 𝑦 = 𝑥 → ( 𝜓 ↔ 𝜑 ) ) |
10 |
9
|
rspcev |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝜑 ) → ∃ 𝑦 ∈ ℕ0 𝜓 ) |
11 |
6 7 10
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) ∧ 𝑥 ∈ ℕ0 ) → ∃ 𝑦 ∈ ℕ0 𝜓 ) |
12 |
11
|
ex |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( 𝑥 ∈ ℕ0 → ∃ 𝑦 ∈ ℕ0 𝜓 ) ) |
13 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℕ0 ) → - 𝑥 ∈ ℕ0 ) |
14 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
15 |
14
|
negnegd |
⊢ ( 𝑥 ∈ ℤ → - - 𝑥 = 𝑥 ) |
16 |
15
|
eqcomd |
⊢ ( 𝑥 ∈ ℤ → 𝑥 = - - 𝑥 ) |
17 |
|
negeq |
⊢ ( 𝑦 = - 𝑥 → - 𝑦 = - - 𝑥 ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑦 = - 𝑥 → ( 𝑥 = - 𝑦 ↔ 𝑥 = - - 𝑥 ) ) |
19 |
16 18
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℤ → ( 𝑦 = - 𝑥 → 𝑥 = - 𝑦 ) ) |
20 |
19
|
imp |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → 𝑥 = - 𝑦 ) |
21 |
20 2
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜑 ↔ 𝜒 ) ) |
22 |
21
|
bicomd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = - 𝑥 ) → ( 𝜒 ↔ 𝜑 ) ) |
23 |
22
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℕ0 ) ∧ 𝑦 = - 𝑥 ) → ( 𝜒 ↔ 𝜑 ) ) |
24 |
13 23
|
rspcedv |
⊢ ( ( 𝑥 ∈ ℤ ∧ - 𝑥 ∈ ℕ0 ) → ( 𝜑 → ∃ 𝑦 ∈ ℕ0 𝜒 ) ) |
25 |
24
|
impancom |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( - 𝑥 ∈ ℕ0 → ∃ 𝑦 ∈ ℕ0 𝜒 ) ) |
26 |
12 25
|
orim12d |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( ( 𝑥 ∈ ℕ0 ∨ - 𝑥 ∈ ℕ0 ) → ( ∃ 𝑦 ∈ ℕ0 𝜓 ∨ ∃ 𝑦 ∈ ℕ0 𝜒 ) ) ) |
27 |
5 26
|
mpd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ( ∃ 𝑦 ∈ ℕ0 𝜓 ∨ ∃ 𝑦 ∈ ℕ0 𝜒 ) ) |
28 |
|
r19.43 |
⊢ ( ∃ 𝑦 ∈ ℕ0 ( 𝜓 ∨ 𝜒 ) ↔ ( ∃ 𝑦 ∈ ℕ0 𝜓 ∨ ∃ 𝑦 ∈ ℕ0 𝜒 ) ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝜑 ) → ∃ 𝑦 ∈ ℕ0 ( 𝜓 ∨ 𝜒 ) ) |
30 |
29
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℤ 𝜑 → ∃ 𝑦 ∈ ℕ0 ( 𝜓 ∨ 𝜒 ) ) |
31 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
32 |
1
|
rspcev |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝜓 ) → ∃ 𝑥 ∈ ℤ 𝜑 ) |
33 |
31 32
|
sylan |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝜓 ) → ∃ 𝑥 ∈ ℤ 𝜑 ) |
34 |
|
nn0negz |
⊢ ( 𝑦 ∈ ℕ0 → - 𝑦 ∈ ℤ ) |
35 |
2
|
rspcev |
⊢ ( ( - 𝑦 ∈ ℤ ∧ 𝜒 ) → ∃ 𝑥 ∈ ℤ 𝜑 ) |
36 |
34 35
|
sylan |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝜒 ) → ∃ 𝑥 ∈ ℤ 𝜑 ) |
37 |
33 36
|
jaodan |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝜓 ∨ 𝜒 ) ) → ∃ 𝑥 ∈ ℤ 𝜑 ) |
38 |
37
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ ℕ0 ( 𝜓 ∨ 𝜒 ) → ∃ 𝑥 ∈ ℤ 𝜑 ) |
39 |
30 38
|
impbii |
⊢ ( ∃ 𝑥 ∈ ℤ 𝜑 ↔ ∃ 𝑦 ∈ ℕ0 ( 𝜓 ∨ 𝜒 ) ) |