Step |
Hyp |
Ref |
Expression |
1 |
|
rexzrexnn0.1 |
|
2 |
|
rexzrexnn0.2 |
|
3 |
|
elznn0 |
|
4 |
3
|
simprbi |
|
5 |
4
|
adantr |
|
6 |
|
simpr |
|
7 |
|
simplr |
|
8 |
1
|
equcoms |
|
9 |
8
|
bicomd |
|
10 |
9
|
rspcev |
|
11 |
6 7 10
|
syl2anc |
|
12 |
11
|
ex |
|
13 |
|
simpr |
|
14 |
|
zcn |
|
15 |
14
|
negnegd |
|
16 |
15
|
eqcomd |
|
17 |
|
negeq |
|
18 |
17
|
eqeq2d |
|
19 |
16 18
|
syl5ibrcom |
|
20 |
19
|
imp |
|
21 |
20 2
|
syl |
|
22 |
21
|
bicomd |
|
23 |
22
|
adantlr |
|
24 |
13 23
|
rspcedv |
|
25 |
24
|
impancom |
|
26 |
12 25
|
orim12d |
|
27 |
5 26
|
mpd |
|
28 |
|
r19.43 |
|
29 |
27 28
|
sylibr |
|
30 |
29
|
rexlimiva |
|
31 |
|
nn0z |
|
32 |
1
|
rspcev |
|
33 |
31 32
|
sylan |
|
34 |
|
nn0negz |
|
35 |
2
|
rspcev |
|
36 |
34 35
|
sylan |
|
37 |
33 36
|
jaodan |
|
38 |
37
|
rexlimiva |
|
39 |
30 38
|
impbii |
|