Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexzrexnn0.1 | |
|
rexzrexnn0.2 | |
||
Assertion | rexzrexnn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexzrexnn0.1 | |
|
2 | rexzrexnn0.2 | |
|
3 | elznn0 | |
|
4 | 3 | simprbi | |
5 | 4 | adantr | |
6 | simpr | |
|
7 | simplr | |
|
8 | 1 | equcoms | |
9 | 8 | bicomd | |
10 | 9 | rspcev | |
11 | 6 7 10 | syl2anc | |
12 | 11 | ex | |
13 | simpr | |
|
14 | zcn | |
|
15 | 14 | negnegd | |
16 | 15 | eqcomd | |
17 | negeq | |
|
18 | 17 | eqeq2d | |
19 | 16 18 | syl5ibrcom | |
20 | 19 | imp | |
21 | 20 2 | syl | |
22 | 21 | bicomd | |
23 | 22 | adantlr | |
24 | 13 23 | rspcedv | |
25 | 24 | impancom | |
26 | 12 25 | orim12d | |
27 | 5 26 | mpd | |
28 | r19.43 | |
|
29 | 27 28 | sylibr | |
30 | 29 | rexlimiva | |
31 | nn0z | |
|
32 | 1 | rspcev | |
33 | 31 32 | sylan | |
34 | nn0negz | |
|
35 | 2 | rspcev | |
36 | 34 35 | sylan | |
37 | 33 36 | jaodan | |
38 | 37 | rexlimiva | |
39 | 30 38 | impbii | |