Metamath Proof Explorer


Theorem rexzrexnn0

Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypotheses rexzrexnn0.1 x=yφψ
rexzrexnn0.2 x=yφχ
Assertion rexzrexnn0 xφy0ψχ

Proof

Step Hyp Ref Expression
1 rexzrexnn0.1 x=yφψ
2 rexzrexnn0.2 x=yφχ
3 elznn0 xxx0x0
4 3 simprbi xx0x0
5 4 adantr xφx0x0
6 simpr xφx0x0
7 simplr xφx0φ
8 1 equcoms y=xφψ
9 8 bicomd y=xψφ
10 9 rspcev x0φy0ψ
11 6 7 10 syl2anc xφx0y0ψ
12 11 ex xφx0y0ψ
13 simpr xx0x0
14 zcn xx
15 14 negnegd xx=x
16 15 eqcomd xx=x
17 negeq y=xy=x
18 17 eqeq2d y=xx=yx=x
19 16 18 syl5ibrcom xy=xx=y
20 19 imp xy=xx=y
21 20 2 syl xy=xφχ
22 21 bicomd xy=xχφ
23 22 adantlr xx0y=xχφ
24 13 23 rspcedv xx0φy0χ
25 24 impancom xφx0y0χ
26 12 25 orim12d xφx0x0y0ψy0χ
27 5 26 mpd xφy0ψy0χ
28 r19.43 y0ψχy0ψy0χ
29 27 28 sylibr xφy0ψχ
30 29 rexlimiva xφy0ψχ
31 nn0z y0y
32 1 rspcev yψxφ
33 31 32 sylan y0ψxφ
34 nn0negz y0y
35 2 rspcev yχxφ
36 34 35 sylan y0χxφ
37 33 36 jaodan y0ψχxφ
38 37 rexlimiva y0ψχxφ
39 30 38 impbii xφy0ψχ