| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexzrexnn0.1 |
|- ( x = y -> ( ph <-> ps ) ) |
| 2 |
|
rexzrexnn0.2 |
|- ( x = -u y -> ( ph <-> ch ) ) |
| 3 |
|
elznn0 |
|- ( x e. ZZ <-> ( x e. RR /\ ( x e. NN0 \/ -u x e. NN0 ) ) ) |
| 4 |
3
|
simprbi |
|- ( x e. ZZ -> ( x e. NN0 \/ -u x e. NN0 ) ) |
| 5 |
4
|
adantr |
|- ( ( x e. ZZ /\ ph ) -> ( x e. NN0 \/ -u x e. NN0 ) ) |
| 6 |
|
simpr |
|- ( ( ( x e. ZZ /\ ph ) /\ x e. NN0 ) -> x e. NN0 ) |
| 7 |
|
simplr |
|- ( ( ( x e. ZZ /\ ph ) /\ x e. NN0 ) -> ph ) |
| 8 |
1
|
equcoms |
|- ( y = x -> ( ph <-> ps ) ) |
| 9 |
8
|
bicomd |
|- ( y = x -> ( ps <-> ph ) ) |
| 10 |
9
|
rspcev |
|- ( ( x e. NN0 /\ ph ) -> E. y e. NN0 ps ) |
| 11 |
6 7 10
|
syl2anc |
|- ( ( ( x e. ZZ /\ ph ) /\ x e. NN0 ) -> E. y e. NN0 ps ) |
| 12 |
11
|
ex |
|- ( ( x e. ZZ /\ ph ) -> ( x e. NN0 -> E. y e. NN0 ps ) ) |
| 13 |
|
simpr |
|- ( ( x e. ZZ /\ -u x e. NN0 ) -> -u x e. NN0 ) |
| 14 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 15 |
14
|
negnegd |
|- ( x e. ZZ -> -u -u x = x ) |
| 16 |
15
|
eqcomd |
|- ( x e. ZZ -> x = -u -u x ) |
| 17 |
|
negeq |
|- ( y = -u x -> -u y = -u -u x ) |
| 18 |
17
|
eqeq2d |
|- ( y = -u x -> ( x = -u y <-> x = -u -u x ) ) |
| 19 |
16 18
|
syl5ibrcom |
|- ( x e. ZZ -> ( y = -u x -> x = -u y ) ) |
| 20 |
19
|
imp |
|- ( ( x e. ZZ /\ y = -u x ) -> x = -u y ) |
| 21 |
20 2
|
syl |
|- ( ( x e. ZZ /\ y = -u x ) -> ( ph <-> ch ) ) |
| 22 |
21
|
bicomd |
|- ( ( x e. ZZ /\ y = -u x ) -> ( ch <-> ph ) ) |
| 23 |
22
|
adantlr |
|- ( ( ( x e. ZZ /\ -u x e. NN0 ) /\ y = -u x ) -> ( ch <-> ph ) ) |
| 24 |
13 23
|
rspcedv |
|- ( ( x e. ZZ /\ -u x e. NN0 ) -> ( ph -> E. y e. NN0 ch ) ) |
| 25 |
24
|
impancom |
|- ( ( x e. ZZ /\ ph ) -> ( -u x e. NN0 -> E. y e. NN0 ch ) ) |
| 26 |
12 25
|
orim12d |
|- ( ( x e. ZZ /\ ph ) -> ( ( x e. NN0 \/ -u x e. NN0 ) -> ( E. y e. NN0 ps \/ E. y e. NN0 ch ) ) ) |
| 27 |
5 26
|
mpd |
|- ( ( x e. ZZ /\ ph ) -> ( E. y e. NN0 ps \/ E. y e. NN0 ch ) ) |
| 28 |
|
r19.43 |
|- ( E. y e. NN0 ( ps \/ ch ) <-> ( E. y e. NN0 ps \/ E. y e. NN0 ch ) ) |
| 29 |
27 28
|
sylibr |
|- ( ( x e. ZZ /\ ph ) -> E. y e. NN0 ( ps \/ ch ) ) |
| 30 |
29
|
rexlimiva |
|- ( E. x e. ZZ ph -> E. y e. NN0 ( ps \/ ch ) ) |
| 31 |
|
nn0z |
|- ( y e. NN0 -> y e. ZZ ) |
| 32 |
1
|
rspcev |
|- ( ( y e. ZZ /\ ps ) -> E. x e. ZZ ph ) |
| 33 |
31 32
|
sylan |
|- ( ( y e. NN0 /\ ps ) -> E. x e. ZZ ph ) |
| 34 |
|
nn0negz |
|- ( y e. NN0 -> -u y e. ZZ ) |
| 35 |
2
|
rspcev |
|- ( ( -u y e. ZZ /\ ch ) -> E. x e. ZZ ph ) |
| 36 |
34 35
|
sylan |
|- ( ( y e. NN0 /\ ch ) -> E. x e. ZZ ph ) |
| 37 |
33 36
|
jaodan |
|- ( ( y e. NN0 /\ ( ps \/ ch ) ) -> E. x e. ZZ ph ) |
| 38 |
37
|
rexlimiva |
|- ( E. y e. NN0 ( ps \/ ch ) -> E. x e. ZZ ph ) |
| 39 |
30 38
|
impbii |
|- ( E. x e. ZZ ph <-> E. y e. NN0 ( ps \/ ch ) ) |