| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexzrexnn0.1 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 2 |  | rexzrexnn0.2 |  |-  ( x = -u y -> ( ph <-> ch ) ) | 
						
							| 3 |  | elznn0 |  |-  ( x e. ZZ <-> ( x e. RR /\ ( x e. NN0 \/ -u x e. NN0 ) ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( x e. ZZ -> ( x e. NN0 \/ -u x e. NN0 ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( x e. ZZ /\ ph ) -> ( x e. NN0 \/ -u x e. NN0 ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( x e. ZZ /\ ph ) /\ x e. NN0 ) -> x e. NN0 ) | 
						
							| 7 |  | simplr |  |-  ( ( ( x e. ZZ /\ ph ) /\ x e. NN0 ) -> ph ) | 
						
							| 8 | 1 | equcoms |  |-  ( y = x -> ( ph <-> ps ) ) | 
						
							| 9 | 8 | bicomd |  |-  ( y = x -> ( ps <-> ph ) ) | 
						
							| 10 | 9 | rspcev |  |-  ( ( x e. NN0 /\ ph ) -> E. y e. NN0 ps ) | 
						
							| 11 | 6 7 10 | syl2anc |  |-  ( ( ( x e. ZZ /\ ph ) /\ x e. NN0 ) -> E. y e. NN0 ps ) | 
						
							| 12 | 11 | ex |  |-  ( ( x e. ZZ /\ ph ) -> ( x e. NN0 -> E. y e. NN0 ps ) ) | 
						
							| 13 |  | simpr |  |-  ( ( x e. ZZ /\ -u x e. NN0 ) -> -u x e. NN0 ) | 
						
							| 14 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 15 | 14 | negnegd |  |-  ( x e. ZZ -> -u -u x = x ) | 
						
							| 16 | 15 | eqcomd |  |-  ( x e. ZZ -> x = -u -u x ) | 
						
							| 17 |  | negeq |  |-  ( y = -u x -> -u y = -u -u x ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( y = -u x -> ( x = -u y <-> x = -u -u x ) ) | 
						
							| 19 | 16 18 | syl5ibrcom |  |-  ( x e. ZZ -> ( y = -u x -> x = -u y ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( x e. ZZ /\ y = -u x ) -> x = -u y ) | 
						
							| 21 | 20 2 | syl |  |-  ( ( x e. ZZ /\ y = -u x ) -> ( ph <-> ch ) ) | 
						
							| 22 | 21 | bicomd |  |-  ( ( x e. ZZ /\ y = -u x ) -> ( ch <-> ph ) ) | 
						
							| 23 | 22 | adantlr |  |-  ( ( ( x e. ZZ /\ -u x e. NN0 ) /\ y = -u x ) -> ( ch <-> ph ) ) | 
						
							| 24 | 13 23 | rspcedv |  |-  ( ( x e. ZZ /\ -u x e. NN0 ) -> ( ph -> E. y e. NN0 ch ) ) | 
						
							| 25 | 24 | impancom |  |-  ( ( x e. ZZ /\ ph ) -> ( -u x e. NN0 -> E. y e. NN0 ch ) ) | 
						
							| 26 | 12 25 | orim12d |  |-  ( ( x e. ZZ /\ ph ) -> ( ( x e. NN0 \/ -u x e. NN0 ) -> ( E. y e. NN0 ps \/ E. y e. NN0 ch ) ) ) | 
						
							| 27 | 5 26 | mpd |  |-  ( ( x e. ZZ /\ ph ) -> ( E. y e. NN0 ps \/ E. y e. NN0 ch ) ) | 
						
							| 28 |  | r19.43 |  |-  ( E. y e. NN0 ( ps \/ ch ) <-> ( E. y e. NN0 ps \/ E. y e. NN0 ch ) ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( ( x e. ZZ /\ ph ) -> E. y e. NN0 ( ps \/ ch ) ) | 
						
							| 30 | 29 | rexlimiva |  |-  ( E. x e. ZZ ph -> E. y e. NN0 ( ps \/ ch ) ) | 
						
							| 31 |  | nn0z |  |-  ( y e. NN0 -> y e. ZZ ) | 
						
							| 32 | 1 | rspcev |  |-  ( ( y e. ZZ /\ ps ) -> E. x e. ZZ ph ) | 
						
							| 33 | 31 32 | sylan |  |-  ( ( y e. NN0 /\ ps ) -> E. x e. ZZ ph ) | 
						
							| 34 |  | nn0negz |  |-  ( y e. NN0 -> -u y e. ZZ ) | 
						
							| 35 | 2 | rspcev |  |-  ( ( -u y e. ZZ /\ ch ) -> E. x e. ZZ ph ) | 
						
							| 36 | 34 35 | sylan |  |-  ( ( y e. NN0 /\ ch ) -> E. x e. ZZ ph ) | 
						
							| 37 | 33 36 | jaodan |  |-  ( ( y e. NN0 /\ ( ps \/ ch ) ) -> E. x e. ZZ ph ) | 
						
							| 38 | 37 | rexlimiva |  |-  ( E. y e. NN0 ( ps \/ ch ) -> E. x e. ZZ ph ) | 
						
							| 39 | 30 38 | impbii |  |-  ( E. x e. ZZ ph <-> E. y e. NN0 ( ps \/ ch ) ) |