| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabdiophlem1 | ⊢ ( ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  →  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐴  ∈  ℤ ) | 
						
							| 2 |  | rabdiophlem1 | ⊢ ( ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  →  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐵  ∈  ℤ ) | 
						
							| 3 |  | znn0sub | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐵  −  𝐴 )  ∈  ℕ0 ) ) | 
						
							| 4 | 3 | ralimi | ⊢ ( ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ≤  𝐵  ↔  ( 𝐵  −  𝐴 )  ∈  ℕ0 ) ) | 
						
							| 5 |  | r19.26 | ⊢ ( ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ↔  ( ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐴  ∈  ℤ  ∧  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐵  ∈  ℤ ) ) | 
						
							| 6 |  | rabbi | ⊢ ( ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ≤  𝐵  ↔  ( 𝐵  −  𝐴 )  ∈  ℕ0 )  ↔  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ≤  𝐵 }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ( 𝐵  −  𝐴 )  ∈  ℕ0 } ) | 
						
							| 7 | 4 5 6 | 3imtr3i | ⊢ ( ( ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐴  ∈  ℤ  ∧  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐵  ∈  ℤ )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ≤  𝐵 }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ( 𝐵  −  𝐴 )  ∈  ℕ0 } ) | 
						
							| 8 | 1 2 7 | syl2an | ⊢ ( ( ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ≤  𝐵 }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ( 𝐵  −  𝐴 )  ∈  ℕ0 } ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ≤  𝐵 }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ( 𝐵  −  𝐴 )  ∈  ℕ0 } ) | 
						
							| 10 |  | simp1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 |  | mzpsubmpt | ⊢ ( ( ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  ( 𝐵  −  𝐴 ) )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 12 | 11 | ancoms | ⊢ ( ( ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  ( 𝐵  −  𝐴 ) )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 13 | 12 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  ( 𝐵  −  𝐴 ) )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 14 |  | elnn0rabdioph | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  ( 𝐵  −  𝐴 ) )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ( 𝐵  −  𝐴 )  ∈  ℕ0 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ( 𝐵  −  𝐴 )  ∈  ℕ0 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 16 | 9 15 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐵 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ≤  𝐵 }  ∈  ( Dioph ‘ 𝑁 ) ) |