Step |
Hyp |
Ref |
Expression |
1 |
|
rabdiophlem1 |
⊢ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) → ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) 𝐴 ∈ ℤ ) |
2 |
|
rabdiophlem1 |
⊢ ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) → ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) 𝐵 ∈ ℤ ) |
3 |
|
znn0sub |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℕ0 ) ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝐴 ≤ 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℕ0 ) ) |
5 |
|
r19.26 |
⊢ ( ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) 𝐴 ∈ ℤ ∧ ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) 𝐵 ∈ ℤ ) ) |
6 |
|
rabbi |
⊢ ( ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ( 𝐴 ≤ 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℕ0 ) ↔ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ≤ 𝐵 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝐵 − 𝐴 ) ∈ ℕ0 } ) |
7 |
4 5 6
|
3imtr3i |
⊢ ( ( ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) 𝐴 ∈ ℤ ∧ ∀ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) 𝐵 ∈ ℤ ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ≤ 𝐵 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝐵 − 𝐴 ) ∈ ℕ0 } ) |
8 |
1 2 7
|
syl2an |
⊢ ( ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ≤ 𝐵 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝐵 − 𝐴 ) ∈ ℕ0 } ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ≤ 𝐵 } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝐵 − 𝐴 ) ∈ ℕ0 } ) |
10 |
|
simp1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
11 |
|
mzpsubmpt |
⊢ ( ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝐵 − 𝐴 ) ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) |
12 |
11
|
ancoms |
⊢ ( ( ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝐵 − 𝐴 ) ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝐵 − 𝐴 ) ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) |
14 |
|
elnn0rabdioph |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ ( 𝐵 − 𝐴 ) ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝐵 − 𝐴 ) ∈ ℕ0 } ∈ ( Dioph ‘ 𝑁 ) ) |
15 |
10 13 14
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ( 𝐵 − 𝐴 ) ∈ ℕ0 } ∈ ( Dioph ‘ 𝑁 ) ) |
16 |
9 15
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐵 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ≤ 𝐵 } ∈ ( Dioph ‘ 𝑁 ) ) |