| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rabdiophlem1 | ⊢ ( ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  →  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐴  ∈  ℤ ) | 
						
							| 2 |  | eluz | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 𝐴  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  𝐴 ) ) | 
						
							| 3 | 2 | ex | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝐴  ∈  ℤ  →  ( 𝐴  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  𝐴 ) ) ) | 
						
							| 4 | 3 | ralimdv | ⊢ ( 𝑀  ∈  ℤ  →  ( ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐴  ∈  ℤ  →  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  𝐴 ) ) ) | 
						
							| 5 | 4 | imp | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) 𝐴  ∈  ℤ )  →  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  𝐴 ) ) | 
						
							| 6 | 1 5 | sylan2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  𝐴 ) ) | 
						
							| 7 |  | rabbi | ⊢ ( ∀ 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ( 𝐴  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  𝐴 )  ↔  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ( ℤ≥ ‘ 𝑀 ) }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑀  ≤  𝐴 } ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ( ℤ≥ ‘ 𝑀 ) }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑀  ≤  𝐴 } ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℤ  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ( ℤ≥ ‘ 𝑀 ) }  =  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑀  ≤  𝐴 } ) | 
						
							| 10 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 11 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 𝑁 )  ∈  V  ∧  𝑀  ∈  ℤ )  →  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝑀 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 12 | 10 11 | mpan | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝑀 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 13 |  | lerabdioph | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝑀 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) )  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑀  ≤  𝐴 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 14 | 12 13 | syl3an2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℤ  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝑀  ≤  𝐴 }  ∈  ( Dioph ‘ 𝑁 ) ) | 
						
							| 15 | 9 14 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑀  ∈  ℤ  ∧  ( 𝑡  ∈  ( ℤ  ↑m  ( 1 ... 𝑁 ) )  ↦  𝐴 )  ∈  ( mzPoly ‘ ( 1 ... 𝑁 ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  𝐴  ∈  ( ℤ≥ ‘ 𝑀 ) }  ∈  ( Dioph ‘ 𝑁 ) ) |