Metamath Proof Explorer


Theorem elnnrabdioph

Description: Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion elnnrabdioph ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ } ∈ ( Dioph ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elnnuz ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( ℤ ‘ 1 ) )
2 1 rabbii { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ } = { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ( ℤ ‘ 1 ) }
3 1z 1 ∈ ℤ
4 eluzrabdioph ( ( 𝑁 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ( ℤ ‘ 1 ) } ∈ ( Dioph ‘ 𝑁 ) )
5 3 4 mp3an2 ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ( ℤ ‘ 1 ) } ∈ ( Dioph ‘ 𝑁 ) )
6 2 5 eqeltrid ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ } ∈ ( Dioph ‘ 𝑁 ) )