| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnnuz |
⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
| 2 |
1
|
rabbii |
⊢ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ( ℤ≥ ‘ 1 ) } |
| 3 |
|
1z |
⊢ 1 ∈ ℤ |
| 4 |
|
eluzrabdioph |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ( ℤ≥ ‘ 1 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
| 5 |
3 4
|
mp3an2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ( ℤ≥ ‘ 1 ) } ∈ ( Dioph ‘ 𝑁 ) ) |
| 6 |
2 5
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑡 ∈ ( ℤ ↑m ( 1 ... 𝑁 ) ) ↦ 𝐴 ) ∈ ( mzPoly ‘ ( 1 ... 𝑁 ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ 𝐴 ∈ ℕ } ∈ ( Dioph ‘ 𝑁 ) ) |