Metamath Proof Explorer


Theorem elnnrabdioph

Description: Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion elnnrabdioph N 0 t 1 N A mzPoly 1 N t 0 1 N | A Dioph N

Proof

Step Hyp Ref Expression
1 elnnuz A A 1
2 1 rabbii t 0 1 N | A = t 0 1 N | A 1
3 1z 1
4 eluzrabdioph N 0 1 t 1 N A mzPoly 1 N t 0 1 N | A 1 Dioph N
5 3 4 mp3an2 N 0 t 1 N A mzPoly 1 N t 0 1 N | A 1 Dioph N
6 2 5 eqeltrid N 0 t 1 N A mzPoly 1 N t 0 1 N | A Dioph N