Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Diophantine sets 5: Arithmetic sets
elnnrabdioph
Next ⟩
ltrabdioph
Metamath Proof Explorer
Ascii
Unicode
Theorem
elnnrabdioph
Description:
Diophantine set builder for positivity.
(Contributed by
Stefan O'Rear
, 11-Oct-2014)
Ref
Expression
Assertion
elnnrabdioph
⊢
N
∈
ℕ
0
∧
t
∈
ℤ
1
…
N
⟼
A
∈
mzPoly
⁡
1
…
N
→
t
∈
ℕ
0
1
…
N
|
A
∈
ℕ
∈
Dioph
⁡
N
Proof
Step
Hyp
Ref
Expression
1
elnnuz
⊢
A
∈
ℕ
↔
A
∈
ℤ
≥
1
2
1
rabbii
⊢
t
∈
ℕ
0
1
…
N
|
A
∈
ℕ
=
t
∈
ℕ
0
1
…
N
|
A
∈
ℤ
≥
1
3
1z
⊢
1
∈
ℤ
4
eluzrabdioph
⊢
N
∈
ℕ
0
∧
1
∈
ℤ
∧
t
∈
ℤ
1
…
N
⟼
A
∈
mzPoly
⁡
1
…
N
→
t
∈
ℕ
0
1
…
N
|
A
∈
ℤ
≥
1
∈
Dioph
⁡
N
5
3
4
mp3an2
⊢
N
∈
ℕ
0
∧
t
∈
ℤ
1
…
N
⟼
A
∈
mzPoly
⁡
1
…
N
→
t
∈
ℕ
0
1
…
N
|
A
∈
ℤ
≥
1
∈
Dioph
⁡
N
6
2
5
eqeltrid
⊢
N
∈
ℕ
0
∧
t
∈
ℤ
1
…
N
⟼
A
∈
mzPoly
⁡
1
…
N
→
t
∈
ℕ
0
1
…
N
|
A
∈
ℕ
∈
Dioph
⁡
N