Metamath Proof Explorer


Theorem eluzrabdioph

Description: Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion eluzrabdioph N0Mt1NAmzPoly1Nt01N|AMDiophN

Proof

Step Hyp Ref Expression
1 rabdiophlem1 t1NAmzPoly1Nt01NA
2 eluz MAAMMA
3 2 ex MAAMMA
4 3 ralimdv Mt01NAt01NAMMA
5 4 imp Mt01NAt01NAMMA
6 1 5 sylan2 Mt1NAmzPoly1Nt01NAMMA
7 rabbi t01NAMMAt01N|AM=t01N|MA
8 6 7 sylib Mt1NAmzPoly1Nt01N|AM=t01N|MA
9 8 3adant1 N0Mt1NAmzPoly1Nt01N|AM=t01N|MA
10 ovex 1NV
11 mzpconstmpt 1NVMt1NMmzPoly1N
12 10 11 mpan Mt1NMmzPoly1N
13 lerabdioph N0t1NMmzPoly1Nt1NAmzPoly1Nt01N|MADiophN
14 12 13 syl3an2 N0Mt1NAmzPoly1Nt01N|MADiophN
15 9 14 eqeltrd N0Mt1NAmzPoly1Nt01N|AMDiophN