Metamath Proof Explorer


Theorem rabeq0w

Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 using implicit substitution, which does not require ax-10 , ax-11 , ax-12 , but requires ax-8 . (Contributed by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis rabeq0w.1 x=yφψ
Assertion rabeq0w xA|φ=yA¬ψ

Proof

Step Hyp Ref Expression
1 rabeq0w.1 x=yφψ
2 eleq1w x=yxAyA
3 2 1 anbi12d x=yxAφyAψ
4 3 ab0w x|xAφ=y¬yAψ
5 df-rab xA|φ=x|xAφ
6 5 eqeq1i xA|φ=x|xAφ=
7 raln yA¬ψy¬yAψ
8 4 6 7 3bitr4i xA|φ=yA¬ψ