Metamath Proof Explorer


Theorem rabeq12f

Description: Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Hypotheses rabeq12f.1 _ x A
rabeq12f.2 _ x B
Assertion rabeq12f A = B x A φ ψ x A | φ = x B | ψ

Proof

Step Hyp Ref Expression
1 rabeq12f.1 _ x A
2 rabeq12f.2 _ x B
3 rabbi x A φ ψ x A | φ = x A | ψ
4 3 biimpi x A φ ψ x A | φ = x A | ψ
5 1 2 rabeqf A = B x A | ψ = x B | ψ
6 4 5 sylan9eqr A = B x A φ ψ x A | φ = x B | ψ