Metamath Proof Explorer


Theorem rabeq12f

Description: Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Hypotheses rabeq12f.1 _xA
rabeq12f.2 _xB
Assertion rabeq12f A=BxAφψxA|φ=xB|ψ

Proof

Step Hyp Ref Expression
1 rabeq12f.1 _xA
2 rabeq12f.2 _xB
3 rabbi xAφψxA|φ=xA|ψ
4 3 biimpi xAφψxA|φ=xA|ψ
5 1 2 rabeqf A=BxA|ψ=xB|ψ
6 4 5 sylan9eqr A=BxAφψxA|φ=xB|ψ