Metamath Proof Explorer


Theorem rabrsn

Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Assertion rabrsn M=xA|φM=M=A

Proof

Step Hyp Ref Expression
1 rabsnifsb xA|φ=if[˙A/x]˙φA
2 1 eqeq2i M=xA|φM=if[˙A/x]˙φA
3 ifeqor if[˙A/x]˙φA=Aif[˙A/x]˙φA=
4 orcom if[˙A/x]˙φA=Aif[˙A/x]˙φA=if[˙A/x]˙φA=if[˙A/x]˙φA=A
5 3 4 mpbi if[˙A/x]˙φA=if[˙A/x]˙φA=A
6 eqeq1 M=if[˙A/x]˙φAM=if[˙A/x]˙φA=
7 eqeq1 M=if[˙A/x]˙φAM=Aif[˙A/x]˙φA=A
8 6 7 orbi12d M=if[˙A/x]˙φAM=M=Aif[˙A/x]˙φA=if[˙A/x]˙φA=A
9 5 8 mpbiri M=if[˙A/x]˙φAM=M=A
10 2 9 sylbi M=xA|φM=M=A