Metamath Proof Explorer


Theorem rabsn

Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006) (Proof shortened by AV, 26-Aug-2022)

Ref Expression
Assertion rabsn BAxA|x=B=B

Proof

Step Hyp Ref Expression
1 eleq1 x=BxABA
2 1 pm5.32ri xAx=BBAx=B
3 2 baib BAxAx=Bx=B
4 3 alrimiv BAxxAx=Bx=B
5 rabeqsn xA|x=B=BxxAx=Bx=B
6 4 5 sylibr BAxA|x=B=B