Metamath Proof Explorer


Theorem rabss2

Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Assertion rabss2 A B x A | φ x B | φ

Proof

Step Hyp Ref Expression
1 ssel A B x A x B
2 1 anim1d A B x A φ x B φ
3 2 ss2abdv A B x | x A φ x | x B φ
4 df-rab x A | φ = x | x A φ
5 df-rab x B | φ = x | x B φ
6 3 4 5 3sstr4g A B x A | φ x B | φ