Metamath Proof Explorer


Theorem rabss2

Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion rabss2 A B x A | φ x B | φ

Proof

Step Hyp Ref Expression
1 pm3.45 x A x B x A φ x B φ
2 1 alimi x x A x B x x A φ x B φ
3 dfss2 A B x x A x B
4 ss2ab x | x A φ x | x B φ x x A φ x B φ
5 2 3 4 3imtr4i A B x | x A φ x | x B φ
6 df-rab x A | φ = x | x A φ
7 df-rab x B | φ = x | x B φ
8 5 6 7 3sstr4g A B x A | φ x B | φ