Metamath Proof Explorer


Theorem rabss3d

Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017)

Ref Expression
Hypothesis rabss3d.1 φxAψxB
Assertion rabss3d φxA|ψxB|ψ

Proof

Step Hyp Ref Expression
1 rabss3d.1 φxAψxB
2 nfv xφ
3 nfrab1 _xxA|ψ
4 nfrab1 _xxB|ψ
5 simprr φxAψψ
6 1 5 jca φxAψxBψ
7 6 ex φxAψxBψ
8 rabid xxA|ψxAψ
9 rabid xxB|ψxBψ
10 7 8 9 3imtr4g φxxA|ψxxB|ψ
11 2 3 4 10 ssrd φxA|ψxB|ψ