Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Eric Schmidt
ralabsod
Next ⟩
rexabsod
Metamath Proof Explorer
Ascii
Unicode
Theorem
ralabsod
Description:
Deduction form of
ralabso
.
(Contributed by
Eric Schmidt
, 19-Oct-2025)
Ref
Expression
Hypothesis
ralabsod.1
⊢
φ
→
Tr
⁡
M
Assertion
ralabsod
⊢
φ
∧
A
∈
M
→
∀
x
∈
A
ψ
↔
∀
x
∈
M
x
∈
A
→
ψ
Proof
Step
Hyp
Ref
Expression
1
ralabsod.1
⊢
φ
→
Tr
⁡
M
2
ralabso
⊢
Tr
⁡
M
∧
A
∈
M
→
∀
x
∈
A
ψ
↔
∀
x
∈
M
x
∈
A
→
ψ
3
1
2
sylan
⊢
φ
∧
A
∈
M
→
∀
x
∈
A
ψ
↔
∀
x
∈
M
x
∈
A
→
ψ