Metamath Proof Explorer


Theorem ralabsod

Description: Deduction form of ralabso . (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis ralabsod.1 φ Tr M
Assertion ralabsod φ A M x A ψ x M x A ψ

Proof

Step Hyp Ref Expression
1 ralabsod.1 φ Tr M
2 ralabso Tr M A M x A ψ x M x A ψ
3 1 2 sylan φ A M x A ψ x M x A ψ