Metamath Proof Explorer


Theorem ralbidb

Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Hypotheses ralbidb.1 φ x A x B ψ
ralbidb.2 φ x A χ θ
Assertion ralbidb φ x A χ x B ψ θ

Proof

Step Hyp Ref Expression
1 ralbidb.1 φ x A x B ψ
2 ralbidb.2 φ x A χ θ
3 1 2 logic1a φ x A χ x B ψ θ
4 impexp x B ψ θ x B ψ θ
5 3 4 bitrdi φ x A χ x B ψ θ
6 5 ralbidv2 φ x A χ x B ψ θ