Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralbidb.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) | |
ralbidb.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜒 ↔ 𝜃 ) ) | ||
Assertion | ralbidb | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜒 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜓 → 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbidb.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) | |
2 | ralbidb.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜒 ↔ 𝜃 ) ) | |
3 | 1 2 | logic1a | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → 𝜒 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → 𝜃 ) ) ) |
4 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → 𝜃 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝜓 → 𝜃 ) ) ) | |
5 | 3 4 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → 𝜒 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝜓 → 𝜃 ) ) ) ) |
6 | 5 | ralbidv2 | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜒 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝜓 → 𝜃 ) ) ) |