Metamath Proof Explorer


Theorem ralbidb

Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). See ralbidc for a more generalized form. (Contributed by Zhi Wang, 6-Sep-2024)

Ref Expression
Hypotheses ralbidb.1 ( 𝜑 → ( 𝑥𝐴 ↔ ( 𝑥𝐵𝜓 ) ) )
ralbidb.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜒𝜃 ) )
Assertion ralbidb ( 𝜑 → ( ∀ 𝑥𝐴 𝜒 ↔ ∀ 𝑥𝐵 ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 ralbidb.1 ( 𝜑 → ( 𝑥𝐴 ↔ ( 𝑥𝐵𝜓 ) ) )
2 ralbidb.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜒𝜃 ) )
3 1 2 logic1a ( 𝜑 → ( ( 𝑥𝐴𝜒 ) ↔ ( ( 𝑥𝐵𝜓 ) → 𝜃 ) ) )
4 impexp ( ( ( 𝑥𝐵𝜓 ) → 𝜃 ) ↔ ( 𝑥𝐵 → ( 𝜓𝜃 ) ) )
5 3 4 bitrdi ( 𝜑 → ( ( 𝑥𝐴𝜒 ) ↔ ( 𝑥𝐵 → ( 𝜓𝜃 ) ) ) )
6 5 ralbidv2 ( 𝜑 → ( ∀ 𝑥𝐴 𝜒 ↔ ∀ 𝑥𝐵 ( 𝜓𝜃 ) ) )