Metamath Proof Explorer


Theorem ralbidc

Description: Formula-building rule for restricted universal quantifier and additional condition (deduction form). A variant of ralbidb . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses ralbidb.1 ( 𝜑 → ( 𝑥𝐴 ↔ ( 𝑥𝐵𝜓 ) ) )
ralbidc.2 ( 𝜑 → ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜓 ) ) → ( 𝜒𝜃 ) ) )
Assertion ralbidc ( 𝜑 → ( ∀ 𝑥𝐴 𝜒 ↔ ∀ 𝑥𝐵 ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 ralbidb.1 ( 𝜑 → ( 𝑥𝐴 ↔ ( 𝑥𝐵𝜓 ) ) )
2 ralbidc.2 ( 𝜑 → ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝜓 ) ) → ( 𝜒𝜃 ) ) )
3 1 2 logic2 ( 𝜑 → ( ( 𝑥𝐴𝜒 ) ↔ ( ( 𝑥𝐵𝜓 ) → 𝜃 ) ) )
4 impexp ( ( ( 𝑥𝐵𝜓 ) → 𝜃 ) ↔ ( 𝑥𝐵 → ( 𝜓𝜃 ) ) )
5 3 4 bitrdi ( 𝜑 → ( ( 𝑥𝐴𝜒 ) ↔ ( 𝑥𝐵 → ( 𝜓𝜃 ) ) ) )
6 5 ralbidv2 ( 𝜑 → ( ∀ 𝑥𝐴 𝜒 ↔ ∀ 𝑥𝐵 ( 𝜓𝜃 ) ) )